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the thyroid, the Vg, was 1.2 times lower for IMRT.

improvements in the outcome of the patients.
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Purpose: To analyze the outcome and dose distribution of intensity-modulated radiation therapy (IMRT) by helical
tomotherapy in women treated for large supradiaphragmatic Hodgkin's disease.

Material and methods: A total of 13 patients received adjuvant radiation at a dose of 30 Gy to the initially involved
sites with a boost of 6 Gy to those areas suspected of harboring residual disease on the simulation CT scan.

Results: With a median follow-up of 23 months, the two-year progression-free survival was 91.6%, and the 2- and
3-year overall survivals were 100%. We did not report any heart or lung acute side effects. The conformity index of PTV
(Planning Target Volume) was better for IMRT than for 3D-CRT (p=0.001). For the breasts, lungs, heart, thyroid and
esophagus, the volume distributions favored the IMRT plans. For the breasts, the Vg, Vasgy and Vagg, were 1.5, 2.5
and 3.5 times lower, respectively, for IMRT than for 3D-CRT. For the lung tissues, the Va, and Vg, were 2 times and
45 times lower, respectively, for IMRT than for 3D-CRT. For the heart, the Vsog, and Ve, were 1.4 and 2 times lower,
respectively, for IMRT than for 3D-CRT. For the esophagus, the V55, was 1.7 lower for IMRT than for 3D-CRT, and for

Conclusion: IMRT by helical tomotherapy improved the PTV coverage and dramatically decreased the dose in organs
at risk. The treatment was well tolerated, but a longer follow-up is necessary to prove a translation of these dosimetric

Introduction

Early-stage Hodgkin lymphoma treated with a combin-
ation of chemotherapy and radiotherapy has an excellent
clinical outcome, with overall survival reaching 90%
[1-4]. However, late effects can dramatically affect the
quality of life or be life-threatening in these survivors
[5]. These late complications, including cardiovascular
effects and secondary cancer, are due to large radiation
doses and fields and also to chemotherapy, both of
which lead to cardiovascular toxicity [6,7] and increase
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the risk of secondary cancer [6,8-11]. Depending on the
follow-up, the incidence rate ranges from 4.6% to 20%
[10,12-17]. The incidence of hematologic cancers is the
most important, with standardized incidence ratios (SIRs)
between 1.5 and 30 times higher than for solid tumors
[10,11,18]. The occurrence of a secondary cancer is more
frequent for women than men [10,19], mainly because of
secondary breast cancers. Several risk factors have been
associated with radiation-induced breast cancers, such as
the age at treatment [20], higher irradiation dose [21,22]
and the irradiation volumes [16,22].

Because radiotherapy remains a cornerstone in the
treatment of Hodgkin lymphoma, some improvements
have been developed recently to decrease the risk of side
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effects: i) decreasing the delivered dose, ii) irradiating
the initially involved fields, and iii) using modern radi-
ation techniques, such as intensity-modulated radiation
therapy (IMRT) [2,3,23-26]. The decrease in the irradi-
ated volume in the breasts could potentially decrease the
risk of secondary breast cancer, thereby improving the
prognosis in these patients [8]. We propose to demon-
strate that using the helical tomotherapy HiArt system
can achieve both the goal of improving the dose distri-
bution to large or bulky PTV and that of sparing organs
at risk compared with 3D radiation therapy (3D-RT) in
young women who are particularly at risk for secondary
breast cancer. We present the results of this study com-
paring dosimetric plans for 3D-conformal radiation ther-
apy (3D-CRT) and for IMRT by helical tomotherapy
(IMRT-HT) in women with Hodgkin disease.

Materials and methods

Patients and methods

A total of 13 patients with a median age of 29.7 years
(17-53 years) at diagnosis were treated for newly diagnosed
supradiaphragmatic stage II Hodgkin’s disease. Twelve pa-
tients had stage IIA, and one had stage IIB. All patients had
cervical and mediastinal lymph node involvement. The ini-
tially involved nodal areas were described according to
Mountain and Dresler’s international classification [27] for
mediastinal node areas and the Gregoire et al. classification
for head and neck node involvement [28]. Internal mam-
mary chain and axillary lymph nodes were involved in four
patients (Table 1). All patients received chemotherapy con-
taining adriamycin, bleomycin, vinblastine and dacarbazine
(ABVD): 1 patient received 3 cycles, 9 patients received
4 cycles, and 2 patients received 6 cycles. One additional
patient was treated with 2 cycles of ABVD followed by 2 cy-
cles of BEACOPP (bleomycin, etoposide, adriamycin, cyclo-
phosphamide, vincristine, procarbazine and prednisone).

Simulation

A customized immobilization mask was used for all pa-
tients. The patients underwent two virtual simulations
on a dedicated computed tomography (CT) instrument
(General Electric™ Lightspeed QXI) using 3.75 mm slices.
The first was performed before any chemotherapy with
contrast enhancement, and the second, without injection,
was performed 15 days after the completion of the chemo-
therapy and 15 days before the start of radiotherapy; the
same position and mask (no masks were remade) were
used. The CTs were performed using a free breath schedule;
patients were placed in the supine position with both arms
along the body. Furthermore, all the patients underwent an
'8 E-FDG-PET scan with 3.27 mm slices before any treat-
ment (General Electric Discovery ST); this scan was used
for simulation and delineation. The position for the PET
scan was equivalent to that used for the simulation CTs.
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Volume definition

The pre-chemotherapy CT and PET were fused with the
pre-RT CT. Contouring was performed with Focal (Elekta
AB, Stockholm, Sweden) for 3D-CRT and IMRT-HT. The
clinical target volume (CTV) and planning target volume
(PTV) were determined according to INRT guidelines
[29,30]. The PTV was obtained by adding 1-cm isotropic
margins to the clinical target volume [30]. The 8 E FDG-
PET scan was used to improve the detection of initially
involved lymph nodes [31]. The organs at risk (OARs)
were delineated, including the heart, spinal cord, thyroid,
esophagus, lungs and breasts.

Treatment planning and dosimetric parameters

The dosimetries were calculated using the Xio (Elekta AB,
Stockholm, Sweden) and Tomotherapy planning systems
(Tomotherapy Incorporated, Madison, WI, USA). The dosi-
metric comparison was performed with Artiview (Aquilab,
Lille, France).

The radiotherapy delivered 30 Gy in 15 fractions of
2 Gy, five days a week to PTV3g,, with boost of 6 Gy in
three fractions of 2 Gy to PTV3egy. The PTV was planned
to receive at least 95% of the prescribed dose according to
ICRU 50 and 62 [32,33]. For both the 3D-CRT and IMRT
plans, the data were collected with respect to the median
(D50%), near-max (D2%) and near-min (D98%) doses ac-
cording to the ICRU 83 [34]. The conformity (CI), homo-
geneity (HI) and coverage (CO) indices of the plans were
calculated [35]. The CI was defined by the ratio between
the reference isodose volume (RIV) and the PTV, and the
HI was defined by the ratio between D2% (near-max dose)
received by the target volume and the reference dose. We
also compared the coverage index (CO) corresponding to
the ratio between D98% (near-min dose) received by the
target volume and the reference dose. The Vsg,, Vaocy and
V3ogy for both lungs minus the PTV were limited, respec-
tively, to 60%, 30% and 20% [36-40]. The dose limits also
included a maximal spinal cord dose limit < 45 Gy and a
mean heart dose < 20 Gy. For the breast, the median,
mean, maximal and minimal doses and the volumes re-
ceiving total doses of 1 to 36 Gy were recorded for each
breast and for a volume summing both volumes.

The 3D-CRT field set-up was performed with two op-
posed parallel antero-posterior fields equally powered
with 6 and 25 MV photon beams. For the IMRT, the
field width, pitch and modulation factors for the treat-
ment planning optimization were 2.5 to 5 cm, 0.287 and
2.5, respectively.

Follow-up

The patients were seen in consultation every two months
during the first year and every four months during the 2™
and 3" years. CT and PET scans were performed at least
every six months. A lung function test (LFT) and cardiac



Table 1 Involved lymph nodes areas (X) and those suspects of no sterilization after chemotherapy (Xo)

Lymph node areas Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10 Patient 11 Patient 12 Patient 13
Cervical lymph node areas 2R X X Xo
3R X Xo Xo X X X
4R X Xo Xo Xo X Xo Xo X Xo X
5R X X Xo X
2L Xo X
3L Xo X X X Xo
4L Xo Xo Xo Xo Xo X X Xo Xo Xo Xo
5L X Xo X X
Mediastinal lymph node areas R Xo Xo Xo Xo X X X X X
2R Xo Xo Xo Xo Xo X X X X X X
1L Xo X Xo X X X X X
2L Xo X X X X X X X X
3A Xo Xo X Xo X X X X X X
3p X X X
4R Xo X X X Xo X X
4L X X X X
5 X Xo Xo X X Xo Xo X Xo X Xo
6 X Xo Xo X Xo Xo Xo X Xo X Xo
7 X X
8
10R X X X X
0L
Para cardiac R X
Axillary lymph node area R X
L X X Xo
Internal mammary chains R X Xo
L X
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ultrasound with the calculation of the left ventricular ejec-
tion fraction (LVEF) were performed at least every year and
were compared with the values obtained before irradiation.

Statistical analysis

The dosimetric parameters of each patient were compared
with the non-parametric equivalent of a paired t-test for
matched observations (Wilcoxon test). The threshold for
statistical significance was p < 0.05. All statistical analyses
were performed using Statview 5.1 software (version 5.1
SAS Institute In.).

Results

The median follow-up of the 13 patients was 23 months
(range: 16—48). The median CTV and PTV were 272 mL
(range: 155-950) and 970 mL (range: 512-2666), respec-
tively. We observed two relapses at 15 and 28 months.
The first relapse arose in a non-irradiated site (with no fix-
ation of **FDG and no adenopathy in the first exam of the
site), and the patient was treated with a new irradiation.
The patient was alive at 48 months. The second relapse
appeared at the irradiated site and was treated by chemo-
therapy. The two-year progression-free survival was 91.6%,
and the 2- and 3-year overall survivals were 100%. The
median number of LCVE controls was 2 (1-4). No cardiac
dysfunction was observed, with a mean LVEF of 63% (60—
70) before irradiation and 63% (55—72) at the last control.
The median number of LFT was 2 (1-4). No change of
the LFT at 1 year was observed, and no patient complained
of breath dysfunction.

Dose distribution
Target dosimetry (Table 2)

The conformity index was better for IMRT than for 3D-
CRT, at 1.2 and 2.4, respectively (p=0.001). The median
cover index was 0.8 (range: 0.4-08) for IMRT and 0.6
(range 07-0.9) for 3D-CRT (p=0.001). The homogeneity
indices were not significantly different between the two
plans. The mean V95% values for IMRT and 3D-CRT
were 95.8% (range: 94.1-99.4%) and 93.7% (range: 76.8-
97.8%), respectively, with no significant difference between
the two plans. The IMRT plans resulted in significantly
lower D2% values compared with 3D-CRT, at 102.9%
(range: 103.7-108.6%) and 105% (range: 101.6-105.8%),
respectively (p=0.002). The D50% and D98% were not
significantly different between IMRT and 3D-CRT.

Breasts (Table 3, Figures 1A, 2)

For both breast volumes, the median maximal dose was
significantly lower for IMRT than for 3D-CRT, at 35.3 Gy
and 38.6 Gy, respectively (p = 0.001). However, the median
mean dose was significantly higher for IMRT: 4.7 Gy com-
pared with 2.7 Gy for 3D-CRT (p = 0.05). As expected, the
volumes receiving the highest dose were lower for IMRT;
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we observed a crossing of the mean DVH curves at 16 Gy
(Figure 1). For both breasts, the volume distribution was
significantly better for 3D-CRT from 1 to 11 Gy (p < 0.05)
and for IMRT from 19 to 36 Gy (p < 0.04). Additionally,
the median Vg, Vasgy and Vsgg, values were signifi-
cantly lower for IMRT compared with 3D-CRT at 3.9%
and 5.7% (p = 0.002), 1.2% and 5% (p = 0.001), and 0.2%
and 4% (p = 0.001), respectively. However, the Vsg, was
significantly higher for IMRT compared with 3D-CRT, at
27% and 9.9% (p = 0.001), respectively.

Lung (Table 3, Figure 1B)

The mean average and maximal doses were significantly
higher for 3D-CRT than for IMRT, at 12.4 and 38.4 Gy
and 9.7 and 36.9 Gy, respectively (p = 0.003 for both).
The mean Vg, and Vsog, were significantly higher for
3D-CRT than for IMRT, at 30.3 and 22.1% and 15.5 and
5.3%, respectively (p = 0.001 for both). However, the mean
Vsgy was significantly lower for 3D-CRT than for IMRT, at
46.3% and 57.7%, respectively (p = 0.001). The lung vol-
umes receiving doses from 1 to 8 Gy were significantly
lower for 3D-RT (p = 0.02). Between 9 and 11 Gy, the vol-
ume distributions were not significantly different. Between
12 and 36 Gy, the lung volumes were significantly lower for
IMRT (p < 0.01). The curves intersected at a dose of 10 Gy.

Heart (Table 3, Figure 1C)

The mean average dose was significantly higher for 3D-
CRT than for IMRT, at 13.9 and 11.5 Gy, respectively (p =
0.01), although the maximal dose was significantly lower for
3D-CRT than for IMRT, at 37.1 Gy and 38 Gy, respectively
(p = 0.01). The mean Vyog, and V3o, were significantly
higher for 3D-CRT than for IMRT, at 35.7 and 29% and 25
and 14.4%, respectively (p = 0.002 and p = 0.001, respec-
tively). The heart volumes receiving doses of 1 or 2 Gy were
significantly lower for 3D-RT (p < 0.009). Between 3 and
11 Gy and for 35 and 36 Gy, the mean volume distributions
were not significantly different. Between 12 and 34 Gy, the
mean volume distributions were significantly lower for
IMRT (p < 0.04). The curves intersected at a dose of 7 Gy.

Esophagus (Table 3, Figure 1D)

The mean average dose was significantly higher for 3D-
CRT than for IMRT, at 24.6 and 21.5 Gy, respectively (p =
0.002). The mean maximal doses were not significantly dif-
ferent for 3D-CRT and for IMRT. The mean V35, was sig-
nificantly higher for 3D-CRT than for IMRT, at 41% and
28.5%, respectively (p = 0.02). Between 1 and 9 Gy and for
36 Gy, the mean volume distributions were not signifi-
cantly different. Between 10 and 35 Gy, the mean volume
distributions were significantly lower for IMRT (p < 0.04).
The curves intersected at a dose of 6 Gy.



Table 2 PTV dose-constraints and indexes for each patient

Patient V95% D98% D50% D2% Cl HI co
3D-CRT IMRT HT 3D-CRT IMRT HT 3D-CRT IMRT HT 3D-CRT IMRT HT 3D-CRT IMRT HT 3D-CRT IMRT HT 3D-CRT IMRT HT

1 95.6 96.2 913 93.05 102 99.9 106.6 104.1 2.3 1.2 1.1 1.1 0.6 0.8

2 96.8 94,9 929 90.7 100.7 99.9 104.7 102.8 24 1.1 1.1 1.1 0.7 0.8

3 923 98.1 825 95.2 100 100 1044 103.05 23 13 1.1 1.1 0.5 0.7

4 943 994 923 978 994 100.1 1073 102.1 28 1.3 1.1 1.1 08 09

5 919 975 904 94.4 99.1 99.8 105 1023 23 13 1.1 1.1 0.6 0.7

6 76.8 94.6 86.3 90.6 97.7 101.2 104.7 105.8 26 13 1.1 1.1 04 0.7

7 94.5 953 88.1 923 103.05 100 106 1016 28 1.1 1.2 1.1 0.6 08

8 922 949 875 911 1016 100 108.6 1029 24 1.1 1.1 1.1 0.5 0.7

9 96.1 943 933 90.5 996 99.7 103.7 1029 24 1.1 1.1 1.1 0.6 0.8

10 94.1 96.8 90.8 93 99.8 99.7 104.5 102.5 23 13 1.1 1.1 0.7 0.7

11 97.8 94.1 94.6 90 101.7 99.8 104.9 103 3.1 1.1 1.1 1.1 0.5 0.7

12 97.2 95.1 937 916 102 100 106.6 1034 30 1.1 1.1 1.1 08 08

13 97.7 945 94.5 90.5 1014 99.8 1054 1029 30 1.2 1.1 1.1 08 08

mean 937 958 906 924 100.6 100 105.6 103 26 1.2 1.1 1.1 0.6 0.8

median 94.5 95.1 913 916 100.7 99.9 105 102.9 24 1.2 1.1 1.1 0.6 0.8
(2] NS NS NS 0.002 0.001 NS 0.001
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Table 3 Dose-comparisons into organs at risk according
to radiation therapy technique

Factors / Dose (Gy) 3D-CRT IMRT (p)
Median Mean Median Mean
Breasts Dmax 386 383 353 336 0.001
Dmin 0.001 002 03 0.8 0.001
Dmean 2.7 49 4.7 57 0.05
V5 Gy 9.9 17.2 27 327 0.001
V20 Gy 5.7 116 39 9.1 0.002
V25 Gy 5.05 104 12 4.6 0.001
V30 Gy 4.05 89 0.2 26 0.001
Right breast Dmax 377 346 327 303 001
Dmin 0.001 0.02 03 0.8 0.001
Dmean 2.1 38 44 52 0.007
V5 Gy 78 131 255 29.7 0001
V20 Gy 43 85 26 78 NS
V25 Gy 35 7.5 1.04 43 0.004
V30 Gy 2.7 6.4 0.2 23 0.002
Left breast Dmax 383 355 34 318 002
Dmin 0.001 008 03 1.5 0.001
Dmean 32 6 46 6.2 NS
V5 Gy 1. 213 318 358 0.007
V20 Gy 64 144 36 10.1 0.002
V25 Gy 55 13 1.5 49 0.002
V30 Gy 44 1.1 04 2.8 0.002
Lung-PTV Dmax 386 384 36.8 369 0.003
Dmin 0.1 02 03 0.7 0.002
Dmean 12 124 9.2 9.7 0.003
V5 Gy 471 463 564 577 0.001
V20 Gy 282 303 12.2 155 0001
V30 Gy 194 221 49 53 0.001
Heart Dmax 373 37.1 38.1 38 0.01
Dmin 03 06 0.7 13 0.001
Dmean 13 139 1.2 1.5 0.01
V20 Gy 323 357 207 25 0.002
V30 Gy 23.1 29 1. 144 0.001
Oesophagus  Dmax 373 373 369 369 NS
Dmin 04 30 0.8 1.7 0.02
Dmean 233 246 208 215 0002
V35 Gy 484 41 26.7 285 0.02
Thyroid Dmax 372 372 369 37.1 NS
Dmin 34 139 126 15.1 NS
Dmean 346 30.1 316 294 NS
V30 Gy 87.7 751 72.7 64.1 0.003
Integral dose Mean (Gy.l) - 1790 - 1768 NS
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Thyroid (Table 3, Figure 1E)

The mean average, maximum and minimal doses were
not significantly different for 3D-CRT compared with
IMRT, at 30.1 and 29.4 Gy, 37.2 and 37.1 Gy and 13.9
and 15.1 Gy, respectively. The mean Vjg, was signifi-
cantly higher for 3D-CRT than for IMRT, at 75.1 and
64.1%, respectively (p = 0.0033). For 1 and 2 Gy, be-
tween 18 and 20 Gy and for 36 Gy, the mean volume
distributions were not significantly different. Between 3
and 17 Gy, the mean volume distributions were signifi-
cantly lower for 3D-CRT (p < 0.02). Between 21 and
35 Gy, the mean volume distributions were significantly
lower for IMRT (p < 0.02). The curves intersected at a
dose of 19 Gy.

Discussion

This study reports a dosimetric comparison of a series
of 13 women with bulky early-stage Hodgkin lymphoma
treated with INRT and IMRT using tomotherapy. This
study is the third publication comparing IMRT and con-
formal 3D radiotherapy; a case report previously com-
pared both techniques [41], and one series of 10 women
comparing four irradiation plans was recently published
[8]. In our series, the volumes were large (bulky tumors)
and needed extensive radiation fields, leading to a diffi-
cult conformal treatment able to spare numerous organs
at risk, such as the heart, lung, thyroid and spine. All
plan comparisons were performed before the treatment,
and overall the patients were treated with IMRT. Because
of the excellent outcome of the patients with early-stage
Hodgkin disease and the known risk of ionizing radiation,
decreasing the treatment was performed. A decrease in
the total dose was the first step [23]; the second step was
the adaptation of the irradiated volume from the involved
fields to the initial involved node areas [3,29,30,42-44]. A
“Mantelet” field was progressively avoided. The last step
to improve the dose distribution was the use of IMRT or
proton therapy or of respiratory gating [24,25,30,45-49].
All these techniques aim to achieve better homogeneity of
the target dose distribution, which we proved in our study
as the conformity index was reduced by a factor of 2 be-
tween 3D-CRT and IMRT.

However, the treatment remains challenging. A recently
published trial demonstrated that a combination of ABVD
and radiotherapy improved disease-free survival compared
with ABVD alone but that the overall survival was worse
in the combination group [50]. The main reason for the
increase in mortality with the combination treatment was
the excess of causes of death other than Hodgkin disease
in the combined treatment group [50]. The doses and ra-
diation technique could be responsible for this loss of
survival. However, in that study, the RT-fields used in the
RT-arm were outdated, i.e., subtotal nodal irradiation,
which is known to contribute to increase morbidity and
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mortality from cardio-toxicity and secondary cancers.
Moreover, many of the deaths in the radiotherapy arm
were clearly unrelated to radiotherapy [50]. A meta-analysis
that pooled the results of trials comparing the combination
of chemotherapy and radiotherapy and the same chemo-
therapy regimens alone showed that combined treatment
was associated with a better disease-free survival and a
higher survival rate. However, the chemotherapy schedules
were not considered optimal [51].

The main causes of death after Hodgkin disease treat-
ment include secondary cancers and lung and heart dys-
function. The cardiac pathologies induced by radiation

are highly variable [52], and the delivered dose to the heart
is a major factor of these complications [53,54]. However,
the dose relationship that induces cardiac morbidity and
cancer is a matter of debate as there is sufficient evidence
to suggest a linear dose—response for cardiac mortality
[55], with doses < 5 Gy most likely being less at risk than
higher doses [56]. Decreasing the dose to the heart is a
major goal, which can be reached with IMRT, even if the
NTCP (normal tissue complication probability) is low at
these doses [41].

For solid secondary neoplasms, breast and lung cancers
are the most frequent types of malignant tumor [10,57].
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Figure 2 Dose distribution for the 3D-CRT (A1-A2) and IMRT
techniques (B1-B2).

The increase in the risk for breast cancer has been well
described [58-64]. The roles of dose [64], volume [65] and
age [10,16] are well known. The risk of secondary lung
cancer is related to the combined treatment and, specific-
ally for radiotherapy, the function of the dose and irradi-
ated volume [66,67]. The dose—response relationships for
secondary cancers also suggest a linear dose—response,
with the exception of thyroid cancer [57,64].
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The follow-up of the patients in this series could be
considered to be short, but the risk of relapse is always
quick; although we treated large tumors, we did not ob-
serve an increase in the relapse rate. Paumier et al. pub-
lished comparable results with a longer follow-up [24,25].
Our series is the first study of women treated with
tomotherapy IMRT, and we can suggest some conclusions.
As expected, IMRT with tomotherapy decreased the me-
dian conformity index by twice, from 2.4 for 3D—CRT to
1.2 with IMRT, a highly significant difference. IMRT is
feasible and well tolerated in terms of clinical tolerance
and heart and pulmonary functions. Large doses were
clearly demonstrated as responsible for the complications
after Hodgkin disease. The dose distributions were clearly
improved by IMRT. This improvement was obtained
mainly for the higher doses that cause heart morbidity and
induce cancer. For the breasts, doses greater than 20 Gy
are at risk of inducing cancer. Van Leeuwen et al. showed
a significantly higher breast cancer risk in patients receiv-
ing radiotherapy alone at a dose of > 24 Gy [64]. Bhatia
et al. also demonstrated that young patients given < 20 Gy
to the breasts did not have a significantly higher risk of
breast cancer compared with the controls [10]. The V,g,,
Vasagy and Viog, were 1.5, 2.5 and 3.5 times lower, respec-
tively, for IMRT than for 3D-CRT. For the lung tissues,
the Vyocy and Vi, were 2 times and 4.5 times lower, re-
spectively, for IMRT than for 3D-CRT. For the heart, the
Vaogy and Viogy, were 1.4 and 2 times lower, respectively,
for IMRT than for 3D-CRT. For the esophagus, the V35,
was 1.7 lower for IMRT than for 3D-CRT, and for the thy-
roid, the Vo, was 1.2 lower for IMRT. Based on this list
of classical constraints to critical organs, we demonstrated
that IMRT can deliver a higher dose to the PTV and suc-
cessfully decrease the highest dose in all the critical organs
at risk of secondary cancer or dysfunction. The values of
lung VjoGy and heart Vs,g, were comparable with those
previously published [8,24,41,48].

However, controlling the secondary appearance of breast
cancer by ultrasound CT and magnetic resonance imaging
beginning at least five to eight years after the completion
of radiation therapy is recommended. For lung cancer,
preventing smoking is recommended. Interestingly, the
risk of mortality using the estimated 20-year survival for
patients with solid secondary cancer was shown to be 72%
compared with 80% for those who did not develop any
secondary cancer, which was not significantly different
[57]. Furthermore, a recently published study reported that
conservative treatment followed by irradiation can be effi-
ciently performed in patients with breast cancer after
Hodgkin disease [68].

Some discussions have criticized the risk of secondary
cancer with respect to the “bath” of low-to-moderate
doses delivered to the patient’s body [49]. However,
some arguments can reassure patients and physicians.
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The first complication in Hodgkin disease in cases simi-
lar to those in our series is cardiac side effects up to car-
diac death. The decrease in the dose in this organ at risk
is assumed to decrease the chance of this type of death
or morbidity. The same conclusion can be reached for
lung function complications. Some authors have trans-
lated the decrease in the dose in NTCP (normal tissue
complication probabilities), showing the clear impact of
the decrease in the dose in lowering complications [41,48].

Notably, the question of radiation-induced carcinogen-
esis remains controversial. In particular, the phenomenon
of radiation hormesis at low radiation doses has attracted
increasing attention [69]. Radiation hormesis is considered
to be an adaptive response to the external stress of radi-
ation exposure and is manifested in several cell lines in
the form of reduced chromosomal aberrations and in-
creased longevity.

Recently, Weber et al. showed by calculating the excess
relative risk that decreasing the irradiation fields leads to a
dramatic decrease in radiation-induced cancer. However,
for comparable irradiation fields, the risks appeared higher
for IMRT than for 3D-CRT. These calculations have been
performed with linear and non-linear models, taking into
account mainly the low dose volume risk [8]. However,
two major clinical series for breast cancer demonstrated a
dose-risk relationship [63,64]. Furthermore, clinical data
have suggested that only a minority of tumors developed
inside (<10%) or outside (11%) the PTV [70,71]. Rather,
the majority of secondary cancers have been observed
within the margin of the PTV [71] or at the field periphery
[71,72]. This region of the dose or penumbra is rarely stud-
ied in the dose distribution and can highly vary according
to the photon energy used for irradiation. This observation
could suggest that radiation-induced cell death becomes
dominant over carcinogenic mutations radiation dose in-
creases. This hypothesis, thus, appears to contrast with the
dose reduction developed recently and to not correlate
with the clinical observation of Kirova et al.,, who showed
that the dose levels at which secondary cancers are most
likely to occur have not yet been clearly established. The
authors showed that most reported cases of radiation-
induced sarcomas after breast irradiation occurred at sites
that had received doses of 60—80 Gy, with a minimal dose
of 10 Gy [9].

Extrapolating the risk of radiation-induced carcinogen-
esis is an uncertain exercise. Data on radiation carcino-
genesis are mainly derived from retrospective studies,
with variable patient populations exposed to variable ra-
diation doses with dosimetry that is often uncertain. In
addition, a heightened risk of secondary malignancies
may exist in these patients. In an extensive review of the
literature, Suit et al. concluded that the experimentally
observed heterogeneity in the induced secondary cancer
risk indicated a large genetic role in the determination

Page 9 of 12

of risk in the individual [73]. Furthermore, due to the
quite large and undefined heterogeneity in the patient
populations studied, no precise quantification of the risk of
radiation-induced secondary cancer is available at present
[73]. Most of these series had difficulties in differentiating
the pathological subtypes and dose distributions, which
seems to be important data to take into account to ame-
liorate the predictive analysis. With respect to the risk of
complications, a large series of children treated with ioniz-
ing radiation demonstrated that the risk of cancer induc-
tion was not clearly related to the dose. One third of those
cancers arose in areas that received a low dose, one third
in areas receiving a moderate doses, and one third in areas
receiving a high dose [74]. In our series, specially con-
ducted in women, we showed that IMRT was able to sig-
nificantly avoid large tissue volumes receiving moderate to
large doses at the cost of increasing the volume receiving a
low dose. However, the integral dose is not increased by
the IMRT technique with tomotherapy compared with
3D-CRT, as shown previously [41,75].

Another factor of confusion could have appeared because
decreasing the dose to non-tumoral tissues will likely lead
to a decrease in radiation-related non-cancerous disease.
Thus, the absolute number of cancers could increase in the
future by improving the survival of the global population.

A better understanding of the dose distributions and in-
ducible secondary cancer for each organ is necessary to
perform dosimetry with real dose constraints to protect
against the development of secondary cancers. Addition-
ally, a prudence principle is required. With respect to this
goal, radiation oncologists are able to demonstrate some
advantages of IMRT compared with 3D-RT.

Conclusion

IMRT is an elegant treatment to irradiate large Hodgkin
disease in women. It allows good local control to be
achieved and has no acute side effects. Because of the
decrease in the higher dose in most organs at risk, this
therapy will hopefully decrease late complications. How-
ever, a longer follow-up is needed to definitively evaluate
such an outcome.
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