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Abstract

Background: In modern cancer medicine, morphological magnetic resonance imaging (MRI) is routinely used in
diagnostics, treatment planning and assessment of therapeutic efficacy. During the past decade, functional imaging
techniques like diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI have increasingly been
included into imaging protocols, allowing extraction of intratumoral information of underlying vascular, molecular
and physiological mechanisms, not available in morphological images. Separately, pre-treatment and early changes
in functional parameters obtained from DWMRI and DCEMRI have shown potential in predicting therapy response.
We hypothesized that the combination of several functional parameters increased the predictive power.

Methods: We challenged this hypothesis by using an artificial neural network (ANN) approach, exploiting nonlinear
relationships between individual variables, which is particularly suitable in treatment response prediction involving
complex cancer data. A clinical scenario was elicited by using 32 mice with human prostate carcinoma xenografts
receiving combinations of androgen-deprivation therapy and/or radiotherapy. Pre-radiation and on days 1 and 9
following radiation three repeated DWMRI and DCEMRI acquisitions enabled derivation of the apparent diffusion
coefficient (ADC) and the vascular biomarker Ktrans, which together with tumor volumes and the established
biomarker prostate-specific antigen (PSA), were used as inputs to a back propagation neural network,
independently and combined, in order to explore their feasibility of predicting individual treatment response
measured as 30 days post-RT tumor volumes.

Results: ADC, volumes and PSA as inputs to the model revealed a correlation coefficient of 0.54 (p < 0.001)
between predicted and measured treatment response, while Ktrans, volumes and PSA gave a correlation coefficient
of 0.66 (p < 0.001). The combination of all parameters (ADC, Ktrans, volumes, PSA) successfully predicted treatment
response with a correlation coefficient of 0.85 (p < 0.001).

Conclusions: We have in a preclinical investigation showed that the combination of early changes in several
functional MRI parameters provides additional information about therapy response. If such an approach could be
clinically validated, it may become a tool to help identifying non-responding patients early in treatment, allowing
these patients to be considered for alternative treatment strategies, and, thus, providing a contribution to the
development of individualized cancer therapy.
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Background
Prostate cancer (PCa) is a disease characterized by bio-
logically heterogeneous behaviour. Treatment of PCa is
controversial, with no established consensus on screen-
ing or diagnostic tests for pre-treatment evaluation of
PCa aggressiveness [1,2]. Consequently, the ability to
differentiate between low-risk and high-risk patients
and the need for and appropriateness of treatment at
any stage of the disease, remains a difficult issue.
Whereas low-risk PCa patients are faced with problems
associated with over-treatment, high-risk PCa patients
might be suffering from under-treatment and high fre-
quency of recurrence. Thus, PCa represents a disease
in which early prediction of ultimate therapeutic effi-
cacy is critical, but so far has been challenging to
achieve.
Prediction of individual therapy response is critically

dependent on the ability to quantify tumor heterogene-
ity and heterogeneous response of tumors with other-
wise identical clinical prognostic factors. Established,
non-invasive methods that effectively evaluate the het-
erogeneous therapy responses are elusive in clinical
practice. Radiological response to treatment is most
commonly quantified by measuring the tumor dia-
meter in one or two directions. However, functional
magnetic resonance imaging (MRI) techniques, like dif-
fusion-weighted (DW) MRI and dynamic contrast-
enhanced (DCE) MRI, are promising and have opened
for repeated in vivo assessment of biomarkers from
underlying vascular, molecular and physiological pro-
cesses in individual tumors. DWMRI depicts the local
microstructural characteristics of water diffusion, can
be quantified by calculating the apparent diffusion
coefficient (ADC), and enables detection of micro-
scopic changes in tissue structure and physiology [3,4].
Further, by tracking the entrance of a diffusible con-
trast agent from the tumor vasculature and into the
extravascular, extracellular space, DCEMRI allows
deduction of the vascular biomarker Ktrans [5], which
may be of particular importance in clinical response
monitoring of increased or inhibited angiogenesis.
Ktrans has also been shown to reflect tumor oxygena-
tion status, which is an important factor for successful
radiotherapy (RT) outcome [6]. Alterations in func-
tional imaging parameters have been shown to precede
tumor volume reductions, enabling identification of
good and poor responders at an early time-point, and
thus, facilitation of individualized treatment schedules
[6-13]. These functional MRI techniques are now
increasingly becoming in routine use in many radiolo-
gical departments, thus, the approach presented in the
current study suggests a further use of these data, by
exploiting them in prediction modeling together with
standard clinical parameters.

Medical artificial intelligence is a methodology that
potentially can support clinicians in deciding correct
diagnosis, making therapeutic decisions and predicting
therapeutic outcome [14,15]. Artificial neural networks
(ANNs) are attractive analytical tools in medicine due to
their ability to learn from historical examples, analyze
non-linear data and being able to generalize a model to
independent data. ANNs are inspired by the biological
nervous system and consist of interconnected processes
utilizing parallel computations, analogous to the biologi-
cal neurons being the brain’s processing units. There are
numerous ANN methods, however, this study concen-
trates on the back propagation neural network (BPNN)
approach. This method was originally described by
Rumelhart et al [16], and has become one of the most
popular ANN algorithms in medicine, due to the
demonstration of high prediction outcomes in a range
of medical applications, which also inspired us to imple-
ment and test this approach. The BPNN architecture
consists of many identical nodes, or neurons, mainly
consisting of nonlinear activation functions. The nodes
are interconnected by weights, representing the inter-
neuron synapses in the brain. Further, the BPNN archi-
tecture is divided into three layers; input, hidden and
output layers. The input layer feeds information into the
network, while the nodes in the hidden layers and out-
put layers process the information. The nodes in the
hidden layer do not have predefined initial values, but
do allow complex relationships between input and out-
put nodes to develop. The training process consists of
forward and backward propagation of signals. In the for-
ward training process, input data are forwardly propa-
gated in the network while known output parameters
are kept in the output nodes to compare the results
generated by the network. In the back propagation
training phase, the respective differences (errors) are
used to change the interconnecting weights by using a
gradient learning algorithm by back propagating the
errors [16].
ANNs have previously been applied on PCa patient

data in order to predict treatment outcome based on
clinical parameters like tumor volume, prostate-specific
antigen (PSA), the primary and regional nodal extent of
the tumor and the absence or presence of metastases
(TNM classification), biopsy Gleason score and age as
input parameters [14,17-21]. In the study by Gulliford et
al [17], volume, PSA and tumor stage were used as
inputs. Although the results from this study unveiled a
predictive potential, both the sensitivity and the specifi-
city were low (sensitivity; 66.8 - 70.2%, specificity; 52.7 -
64.2%). Further, Stephan et al [21] performed a study
where PSA was used as input to an ANN approach in
order to investigate whether such a model could differ-
entiate between PCa and benign prostatic disease. Also
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in this study the specificity was low; median values
62.1% and 45.5%, for 90% and 95% sensitivity, respec-
tively. We hypothesize that the addition of functional
magnetic resonance imaging (MRI) parameters into a
prediction model might provide valuable intratumoral
information that, in addition to the established clinical
parameters, will contribute to improve the prediction of
therapeutic efficacy.
To explore whether the combined use of pre-treat-

ment and early therapy-induced changes in functional
MRI parameters increases the prediction of therapeutic
response, we elicited a clinical scenario by using human,
androgen-sensitive prostate carcinoma xenografts receiv-
ing RT and/or androgen-deprivation therapy (ADT).
Functional MRI parameters were derived after three
repeated DWMRI and DCEMRI sessions, and together
with volumes and PSA measurements, these parameters
were independently and combined used as inputs to a
BPNN in order to explore their feasibility of predicting
treatment response measured as 30 days post-RT tumor
volumes.

Methods
A schematic synopsis of the experiment is provided in
Figure 1.

Animals, xenografts and treatment
Male, sexually mature BALB/c nude mice (30 - 35 g, 6 -
8 weeks old) were subcutaneously (s.c.) implanted with

~ (2 × 2 × 2) mm3 tumor tissue from the human,
androgen-sensitive CWR22 xenograft. Procedures for
implantation of xenografts are previously described [22].
All animal experiments were performed according to
protocols approved by the animal care and use
committee.
Animals were included in the experiment when their

shortest tumor diameter reached 8 mm. Androgen-
deprived CWR22 xenografts (CWR22-cas) were
obtained by surgical castration of animals bearing
CWR22 xenografts at a shortest tumor diameter of 13
mm; the animals were included in the experiment when
CWR22-cas xenografts had regressed to a shortest dia-
meter of 8 mm. The time from castration to inclusion
was 36 ± 4 days. Totally 32 animals (4 groups of 8 ani-
mals) were used; CWR22 control, CWR22 irradiation,
CWR22-cas control and CWR22-cas irradiation. At
inclusion, animals were subjected to a pre-treatment
(day 0) MRI before tumors in the irradiation groups
received a single-dose of 15 Gy from a 60Co source
(Mobaltron 80, TEM Instruments, Crawley, UK) with a
dose rate of 0.8 Gy/min. At day 1 and day 9 repeated
MRIs were performed of all animals.
Anesthesia was provided as s.c. injections of a mixture

of 2.4 mg/ml tiletamine and 2.4 mg/ml zolazepam
(Zoletil vet, Virbac Laboratories, Carros, France), 3.8
mg/ml xylazine (Narcoxyl vet, Roche, Basel, Switzer-
land), and 0.1 mg/ml butorphanol (Torbugesic, Fort
Dodge Laboratories, Fort Dodge, IA), diluted 1:5 in ster-
ile water. A dose of 50 μl/10 g was given prior to irra-
diation and 75 μl/10 g before MRI and castration.
Castrated animals received analgesia as 0.1 mg/kg s.c.
injections of buprenorphine (Temgesic; Schering-Plough,
Brussels, Belgium).

MRI acquisition and analysis
MRI was acquired at day 0 (pre-RT), day 1 and day 9,
using a 1.5 T GE Signal LS scanner (GE Medical Sys-
tems, Milwaukee, WI). Animals were imaged using an
MRI mouse coil [23], while the temperature was main-
tained at 38°C. First, the tumor was localized using axial
fast spin-echo (FSE) T2-weighted (T2W) images (echo
time (TEeff) = 85 ms, repetition time (TR) = 4000 ms,
echo train length (ETL) = 16, image matrix (IM) = 256
× 256, field-of-view (FOV) = 4 cm, slice thickness (ST)
= 2 mm). Second, diffusion-weighted images (single shot
FSE; TEeff = 78.8 ms; TR = 5000 ms; FOV = 14 cm; IM
= 128 × 128; ST = 2 mm; interslice gap = 1 mm; b-
values = 0 and 100 s/mm2) were acquired with the fol-
lowing x, y, and z directions; [1 0 1], [-1 0 1], [0 1 1], [0
1 -1], [1 1 0] and [-1 1 0]. An axial FSE T2W sequence
with identical FOV as the DWMRI was obtained for
post-processing image analysis purposes. Third, the
DCEMRI acquisitions were obtained as described
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Figure 1 Schematic synopsis of the study. Androgen-sensitive
prostate carcinoma xenografts received combinations of androgen-
deprivation therapy (ADT) and/or radiotherapy (RT) and were
subjected functional magnetic resonance imaging (MRI) pre-
treatment and 1 and 9 days after onset of treatment. Together with
standard clinical parameters (prostate-specific antigen (PSA), tumor
volumes) the functional MRI parameters reflecting structural
composition (apparent diffusion coefficient (ADC)) and
vascularization (Ktrans) were used as inputs in an artificial neural
network to elucidate how these functional MRI parameters
independently and combined affected the prediction of therapy
response, as measured by the 30 days post-RT tumor volumes (V30).
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elsewhere [22]. Briefly, a catheter attached to a cannula
with saline-diluted Gd-DTPA (Magnevist®, Schering,
Berlin, Germany) was inserted into the tail vein.
Dynamic T1-weighted (T1W) imaging was acquired by
performing 20 minutes of dynamic fast spoiled gradient-
recalled (FSPGR) imaging after the initial 5 pre-contrast
images and the 3 seconds injection of the contrast
agent. Time resolution was 12 seconds and the voxel
size was 0.23 × 0.47 × 2 mm3. Proton density images
were acquired prior to and after DCEMRI to allow
quantification of the concentration of Gd-DTPA [24].
The vascular input function (VIF) needed in quantitative
post-processing image analysis was VIF = 3.57 ± 0.34
mM (exp((-0.025 ± 0.005 s-1)t)) + 1.45 ± 0.15 mM (exp
((-0.0074 ± 0.0036 s-1)t)) (22).
Post-processing DWMRI analysis was performed in

nICE (Nordic NeuroLab, Bergen, Norway). Isotropic
ADC maps were calculated voxel-wise using a mono-
exponential approach, allowing determination of mean
tumor ADCs after transferring tumor region-of-interests
(ROIs) delineated in T2W MR images to the ADC
maps. DCEMRI analysis was executed in IDL (Interac-
tive Data Language v6.2, Research Systems Inc., Boulder,
CO). ROIs were traced in post-contrast T1W images,
before contrast enhancement curves from individual
voxels were fitted to the kinetic model of Tofts [5],
allowing voxel-wise and mean tumor estimation of the
vascular biomarker Ktrans (s-1).

PSA
Blood samples from all animals at days 0, 1 and 9 were
obtained and allowed to coagulate before being centri-
fuged and stored at -80°C until analysis. Free and total
PSA were assayed by the fluoroimmunonometric Auto-
DELFIA ProStatus™ PSA Free/Total kit (PerkinElmer
Life and Analytical Sciences, Wallac Oy, Turku,
Finland).

Treatment response monitoring
From the day of implantation until day 30 post-irra-
diation, tumor volumes were estimated from caliper
measurements by using the formula (length × length
× width)/2, with length being the longest diameter
across the tumor and width the corresponding
perpendicular.

ANN simulations
Tumor volumes (V), PSA, ADC and Ktrans acquired pre-
treatment and early in treatment course were normal-
ized to the individual baseline (day 0) measurement
(Figure 2) and used as inputs to a BPNN to explore
whether these parameters could predict treatment
response, as measured by individual tumor volumes 30
days post-irradiation (V30). Additionally, four categorical

(binary encoded) variables representing treatment
groups were used in all simulations. The BPNN repeat-
edly adjusted the weights of the network and the thresh-
old of each neuron according to a criterion that the cost
function minimized. The cost function was a root mean
squared error (RMSE) between the target outputs and
the actual outputs of the network. The two steps of the
learning process included:

a) Forward propagation. The value of the calculated
output, yj, was compared to the actual output, Oj,
before the output differences were inserted into the
error function E defined as:

E =
1
2

M∑

i=1

N∑

j=1

(Oij − yij)
2

where M is the total number of tumor response pat-
terns given as input to the network, N is the total num-
ber of output nodes of the network, and j a specific
output node, given a specific pattern i into the network.

b) Backward propagation. The error E from equation
above was back propagated by updating the weights,
wij, using scaled conjugate gradient descents:

�wij
new = �wij

old − ∂E
∂wij

η

where h (0 <h < 1) controlled the learning rate of the
algorithm. The learning process continued until E con-
verged to a predefined value or until the maximum
number of epochs was reached. An epoch is a single
pass of the data through the network, i.e. the different
tumor response patterns (V, PSA, ADC and/or Ktrans)
for all experimental groups through the training set, fol-
lowed by the validation set and the testing set.
All ANN simulations were performed in the Matlab

Neural Network Toolbox, software version 4.0.2 (The
Mathworks, Inc., Natick, MA).
Three different simulations with different sets of input

parameters were performed using the same BPNN
architecture. For all simulations, the BPNN used six hid-
den layers and a sequential mode for training, while
keeping h = 0.4. The first simulation used a dataset con-
sisting of numerical normalized inputs of ADC, V and
PSA from days 0, 1 and 9, and categorical variables
representing treatment groups. The architecture, includ-
ing hidden layers, of the neural network is illustrated in
Figure 3. In the second simulation, the dataset consisted
of numerical Ktrans, V and PSA values from days 0, 1
and 9, in addition to the treatment groups. The last
simulation included all numerical parameters (ADC,
Ktrans, V and PSA) and treatment groups.
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Statistical analysis
Using a significance level of 5%, the Pearson’s correla-
tion test (SPSS 16.0, SPSS, Cary, NC) assessed whether
correlations between variables were significant.

Results
Ultimate treatment response was measured as tumor
volumes at day 30 (V30). Volumes of tumors in the

untreated group increased with 940 ± 91% compared to
baseline (day 0) volumes, whereas tumors receiving
radiation were 60 ± 25% larger at the endpoint than at
baseline. Androgen-deprivation alone resulted in reduc-
tion in tumor volumes by 40 ± 9% compared to base-
line, whereas tumors receiving combined androgen-
deprivation and radiotherapy presented a 64 ± 5%
tumor volume reduction at the experimental endpoint.

A B

C D

Figure 2 Input parameters to the artificial neural network model. Tumor volumes (V), prostate-specific antigen (PSA), the apparent diffusion
coefficients (ADC) and the vascular biomarker Ktrans were acquired pre-treatment and early in treatment course and normalized to the baseline
(day 0) measurement. These parameters were used as inputs to the back propagation neural network (BPNN) in order to explore whether they
could predict therapeutic outcome, as measured by the 30 days post-radiotherapy (RT) tumor volumes.
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By using a BPNN with a scaled conjugate gradient learn-
ing algorithm, 50% of the data were used for training, 25%
for validation and 25% for testing. The RMSE plot in Fig-
ure 4A shows the performance of the testing and valida-
tion of the first simulation, where normalized values of
ADC, PSA and tumor volumes from days 0, 1 and 9, in
addition to treatment groups (binary encoded), were used
as input variables. For this simulation, the RMSE increased
after 30 epochs, indicating overtraining. Thus, the optimal
training for the network was found to be 30 epochs. The
optimal number of epochs for the second and third simu-
lations was decided by a similar approach as above, and
found to be 49 and 69, respectively.
The use of ADC together with tumor volumes, PSA and

treatment groups as inputs to the BPNN model revealed a

correlation coefficient of 0.54 (p < 0.001) between pre-
dicted and measured treatment response (V30) (Figure 4B).
By replacing the ADC with Ktrans, the correlation coeffi-
cient increased to 0.66 (p < 0.001) (Figure 5). However,
the combination of all parameters (V, PSA, ADC, Ktrans)
predicted treatment response with a correlation coefficient
of 0.85 (p < 0.001) between predicted and measured V30

(Figure 6). This approach was superior to all other ANN
simulations using the parameters independently.

Discussion
Assessment of therapeutic efficacy in PCa patients
represents a controversial issue in clinical medicine due
to the heterogeneity of the disease and its unpredictable
treatment response. Although the use of ADT and/or

Total input: 

I = w1X1 + …. + wnXn

where X1, ..., Xn are
measured inputs 
and w1, ..., wn
are weights

Output:

Y = f(I)

f

ijw
Enew

ijw=old
ijw -

2M

1=i

N

1=j ijy-ijO
2
1=E

Forward propagation: Backward propagation: 

f = activation 
function

Figure 3 Illustration of the architecture of the back propagation neural network (BPNN). The BPNN repeatedly adjusts the weights, w, of the
network and the threshold of each neuron (grey circles). The two steps of the learning process include forward propagation, where the predicted
output value, O, is compared to the actual output value, y, and backward propagation, where the error, E, from this comparison is back propagated
by updating the weights using a scaled conjugated gradient descent algorithm. The h (0 <h < 1) is a constant controlling the convergence rate of
the algorithm. A six-layered network approach and a sequential mode for training were used in all simulations, keeping h = 0.4.
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Figure 4 Prediction of treatment response using apparent diffusion coefficients from diffusion-weighted MRI. The root mean square
error (RMSE) plot visualizes the performance of the training, validation and test data (A). By using apparent diffusion coefficients (ADC), tumor
volumes (V), prostate-specific antigen (PSA) and treatment groups as inputs to the back propagation neural network (BPNN) a correlation
coefficient of 0.54 (p < 0.001) was found between predicted and measured treatment response (V30) (B).
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Figure 5 Prediction of treatment response using Ktrans from
dynamic contrast-enhanced MRI. By using Ktrans, tumor volumes
(V), prostate-specific antigen (PSA) and treatment groups as inputs
to the back propagation neural network (BPNN) a correlation
coefficient of 0.66 (p < 0.001) was found between predicted and
measured treatment response (V30).

Figure 6 Combining multiple functional MRI parameters
improves prediction of treatment response. By combining all
parameters (tumor volumes (V), prostate-specific antigen (PSA),
apparent diffusion coefficients (ADC), Ktrans) and treatment groups,
the treatment response was predicted with a correlation coefficient
of 0.85 (p < 0.001) between predicted and measured V30.
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RT causes tumor regression, complete remission often
fails and high-risk patients usually present recurrent dis-
ease within few years. Classic prognostic factors, like
tumor volume, PSA, TNM classification and Gleason
score, are those that currently guide therapy selection.
However, these may be suboptimal in predicting out-
come for individual patients, as these factors are not
accounting for the underlying heterogeneity in vascular,
molecular and physiological processes causing large var-
iations in individual tumor responses. Thus, these fac-
tors may not enable prediction of treatment failure early
in the course of treatment, when therapeutic adjust-
ments still are feasible in terms of e.g. radiation dose
escalation or alterations in concurrent therapy.
The benefits of ANNs compared to conventional

regression statistics comprise the capability of being
more accurate for large and complex data materials, e.g.
patient data with multiple parameters from multiple
measurement time-points. The artificial intelligence
models of biological systems can be generated without
needing assumptions about the underlying statistical dis-
tributions. Currently, in vivo imaging techniques are
rapidly evolving and being extensively tested for their
capability of correctly reflecting biological and physiolo-
gical properties of tumor tissue. Such functional infor-
mation is particularly beneficial for ANNs, since data
from multiple sources effectively can be incorporated
without needing knowledge on the combination of
underlying biological information.
The presented results were obtained in a preclinical

study in prostate cancer xenografts, and suggest that the
combination of functional MRI parameters, in addition
to standard clinical parameters, increases the power of
predicting therapeutic outcome in prostate carcinoma
after treatment with ADT and/or RT. Our two first
simulations included each individual tumor’s ADC from
DWMRI, or Ktrans from DCEMRI, respectively, in addi-
tion to the standard clinical parameters tumor volume
and PSA. The correlations between the BPNN predicted
and the measured treatment response were found to be
significant, but not very strong (R = 0.54 and R = 0.66,
respectively). When we combined both the ADC and
the Ktrans results in the third simulation, this gave a con-
siderable increase in the correlation between the pre-
dicted and measured outcome (R = 0.85), indicating that
these parameters together reflect important treatment
response-related information of the tumors.
Our results were obtained in a human xenograft

model, thus, the next step could be to apply the same
approach in a clinical setting, including parameters from
functional MRI, as well as standard clinical parameters,
from PCa patients receiving ADT and/or RT treatment.
In the present study, the post-treatment imaging was
performed at day 1 and day 9, and these time-points are

maybe not easily translated into clinical assessment of
early treatment response. However, in recent years, the
use of imaging modalities for early-in-treatment
response assessments, for example 3 to 8 weeks after
initiation of therapy, has increased, and showed poten-
tial to evaluate whether the patient respond to the cho-
sen treatment or not. If this could be reliably measured,
or predicted, from this early imaging assessment, this
may help deciding whether the patient should receive
intensified, or altered treatment, or possibly a reduction
in unnecessary treatment. Moreover, if accounting for
the five times faster metabolism in mice, 9 days would
translate into approximately 6 weeks in a human, and
thus, this may be a relevant time-point for treatment
response evaluation, although not directly comparable.
However, the results from the current study suggest a
promising additional utilization of the large amounts of
image data presently being acquired in hospitals. If the
model is validated in clinical data, the presented metho-
dology might become an early assay for treatment
response prediction, wherein different pre-treatment and
early in-treatment functional imaging parameters may
be combined with standard clinical parameters in order
to increase the prediction of how individual tumors
respond to therapy.
Although all simulations demonstrate significant cor-

relations between the predicted tumor volume 30 days
post-RT and the measured tumor volumes, Figures 4B,
5 and 6 also indicate a spread in the data points. This
implies that there is a probability of misclassifying the
response from individual tumors, meaning that precau-
tion should be taken if extrapolations to individuals are
performed uncritically. Further, when using a BPNN,
care should also be taken when training the network, in
order not to under- or overtrain it [25]. Since our
RMSE function (Figure 4A) from training, testing and
validating the network showed curve flattening after a
few training epochs, this indicated that no overtraining
occurred. However, if such a model is to be applied on
clinical data, the model must be rigorously validated, for
example with respect to the number of layers and
epochs. Patient materials will always present a larger
biological heterogeneity than xenografts grown in
immune-deficient mice, representing a risk for over-
training the network if the BPNN parameters are not
chosen cautiously.

Conclusion
The presented results, derived from a preclinical study in
prostate cancer xenografts, indicate that the combination
of several functional MRI parameters obtained pre-treat-
ment and early in the course of treatment, into an artifi-
cial neural network model, may provide additional, useful
information about therapy response. If clinically

Røe et al. Radiation Oncology 2011, 6:65
http://www.ro-journal.com/content/6/1/65

Page 8 of 9



established, this approach may help identifying non-
responding patients early during treatment course, allow-
ing these patients to be considered for alternative treat-
ment strategies, and, thus, providing a contribution to
the development of personalized prostate cancer therapy.
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