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Abstract

BiolVled Central

Background: Medulloblastoma and other types of tumors that gain access to the cerebrospinal
fluid can spread throughout the craniospinal axis. The purpose of this study was to devise a simple
multi-compartment kinetic model using established tumor cell growth and treatment sensitivity
parameters to model the complications of this spread as well as the impact of treatment with
craniospinal radiotherapy.

Methods: A two-compartment mathematical model was constructed. Rate constants were
derived from previously published work and the model used to predict outcomes for various
clinical scenarios.

Results: The model is simple and with the use of known and estimated clinical parameters is
consistent with known clinical outcomes. Treatment outcomes are critically dependent upon the
duration of the treatment break and the radiosensitivity of the tumor. Cross-plot analyses serve as
an estimate of likelihood of cure as a function of these and other factors.

Conclusion: The model accurately describes known clinical outcomes for patients with
medulloblastoma. It can help guide treatment decisions for radiation oncologists treating patients
with this disease. Incorporation of other treatment modalities, such as chemotherapy, that enhance
radiation sensitivity and/or reduce tumor burden, are predicted to significantly increase the
probability of cure.

Background

Medulloblastoma is a relatively common primary tumor
of the central nervous system (CNS) in the pediatric pop-
ulation, representing about 20% of brain tumors in this
group [1]. The mainstays of treatment include maximal
surgical resection followed by chemotherapy and radia-
tion to the entire craniospinal axis (brain and spine), also
known as craniospinal irradiation (CSI) [2]. Radiothera-

pists treat the entire craniospinal axis because the tumor
cells have direct axis to the subarachnoid space, and,
hence, the cerebrospinal fluid (CSF), which can provide a
route for metastatic spread throughout the craniospinal
axis. Early clinical studies indicated the importance of full
CSI as opposed to treatment of smaller, gross-tumor-
directed volumes [3]. Various clinical trials have been per-
formed or are underway to study reduction of the radia-
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tion dose and attendant complications of CSI, possibly by
way of intensifying chemotherapy. Nonetheless, CSI has
retained its role as a critical component in the multimo-
dality management of medulloblastoma [4,5].

Other primary and metastatic tumors of the CNS can also
spread throughout the craniospinal axis via the CSF with
leptomeningeal carcinomatosis, a descriptive term for
tumor studding along the leptomeninges. In such
patients, CSI may play a palliative role in the treatment
armamentarium [6]. These patients are occasionally
treated with intrathecal chemotherapy, which is another
means of treating the entire subarachnoid space [7,8].

Delivery of CSI with standard photon therapy presents a
geometric dilemma that is typically solved by the use of
opposed lateral brain fields that are matched with colli-
mator and treatment couch rotations to one or two poste-
rior-anterior spine fields (Figure 1, reprinted with
permission). When photons (as opposed to protons or
electrons) are used to deliver CSI, these field arrangements
ultimately lead to irradiation of a large portion of a
patient's normal tissues, including the vertebral bodies
with their productive bone marrow, as well as the viscera
of the thorax, abdomen, and pelvis. Complications during
treatment can include nausea, esophagitis, diarrhea and
life-threatening myelosuppression  (particularly in
patients who have undergone preceding courses of chem-
otherapy); long-term complications may involve growth
disturbances, hypothyroidism, and, especially in children,
induction of second malignancies [9,10].

By the nature of their arrangement, the treatment fields
described above functionally compartmentalize the
craniospinal axis into 'brain' and 'spine' compartments.
Because of acute treatment-related toxicities, especially
myelosuppression (a complication that can arise early in
the treatment course), it is occasionally necessary to sus-
pend treatment of the spine temporarily while treatment
of the brain continues. Since the brain and spine are in
communication via the cerebrospinal fluid, holding treat-
ment in one compartment may threaten tumor control in
the other secondary to seeding of cells between these com-
partments. For example, tumor regrowth in the spine that
occurs during treatment delays can seed tumor cells into
the brain. CSF flow between the brain and spine may be
considered analogous to the problem of a primary extrac-
ranial tumor forming distant metastases via hematoge-
nous spread. Previous reports have modeled the process
of metastasis, with the ultimate goal of evaluating and
optimizing therapeutic intervention within the contexts
of these models [11].

In this report we describe a kinetic model of tumor trans-
port in the craniospinal axis (subarachnoid space and
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Arrangement of craniospinal irradiation fields. A lat-
eral view of the relationship between a lateral portal and a
posterior-anterior portal is shown. The location of the com-
partments is indicated. Within each compartment are two
phases, namely the tumor and fluid phase. (Reproduced, with
permission, with modifications, from L. E. Kun, Pediatric
Radiation Oncology, eds. Edward C. Halperin, L. S. Constine,
N. J. Tarbell, L. E. Kun, Lippincott Williams & Wilkins, 2005)

ventricle spaces) for medulloblastoma. The model is
tested to assess if it can reasonably describe established
clinical observations. Following this, the relative effects of
changes in parameters incorporated in the model, such as
those associated tumor cell shedding and adhesion, are
discussed.

Methods

The craniospinal axis is considered as having two tissue
compartments, brain (b) and spine (s), with two phases,
solid tumor (t) and cerebrospinal fluid (f), within each
compartment (Figure 2). In the model the brain is not
subdivided into supratentorial and posterior fossa (where
medulloblastomas arise) compartments but rather as a
single compartment. Recognizing that CSF flow is tempo-
rally and spatially heterogeneous [12], we assume that
each fluid phase is well-mixed, as a crude approximation.
Between the two compartments, cell transfer is governed
by the volumetric flow rate, Q, and the cell concentration
in the fluid phases, i.e., the number of cells in the fluid
phase divided by the volume of that phase. This is a rea-
sonable assumption since the CSF flows relatively freely
between the brain and spine compartments. Within each
tissue compartment, transfer of cells between the phases is
determined by the rate of adhesion of cells from the fluid
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phase onto the solid phase and by the rate of shedding of
cells from the solid phase into the fluid phase. We assume
that adhesion and shedding are described by the product
of cell number and the rate constants k.4, and k.4
respectively. However, not all of the cells shed into the
fluid phase will be viable, and adhesion will account for
only a portion of the cells cleared from the CSF. This is
accounted for in the model by incorporating modulating
efficiency factors for transfer of viable cells from the CSF
to solid tumor and from solid tumor to CSF, y;and ¥,
respectively, which range in value from 0 to 1.

Finally, the tumor cell growth rate in each phase is
assumed to be a linear function of tumor cell number
(first-order growth kinetics), i.e., the product of growth
rate constant, and cell number for that compartment and
phase. For the purposes of this model, we are interested in
estimating tumor control and focus on the development
of relatively small tumors. Thus, we can ignore substrate
and transport limitations that would require Gompertz-
ian-type models of tumor growth [13]. Of course, much
more complex growth models could be employed in this
model, using the numerical solution technique described
below.

Based on the above assumptions and in the absence of
radiation-induced cell killing, the following system of

ordinary differential equations is derived:

(1) dNgg/dt = kg N, e+ QN ¢/ Vi, - N ¢/ Vo) + VikheaNs,( -
kaths,f

(2) st,t/dt = kg,th,t - kshest,t + Yfkaths,f

(3)  dNpg/dt =k Ny e+ QN o/ V- Ny, Vi) + YigheaNb, -
KagnNp, ¢

(4)  dNg/dt =k Ny - kgpeaNp  + YanNp ¢

Qf

Ner Nyt
Kihed i Kaan Kihed ‘ Kt

[ A

Ns..t Nb,t
Figure 2

The phases and compartments of the model. The rate
constants shown govern the flow of tumor between the
phases.
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where N, , is the number of cells in compartment x, phase
Vi kg is the growth rate constant in phase y; and V;and V,,
are the volumes of the spine and brain subarachnoid
space compartments, respectively. 's' refers to spine, 'b'
refers to brain, 'f' refers to fluid, and 't' refers to tumor.

Rate constants in the model have been derived from in
vivo data when possible so as to reflect clinical reality as
closely as possible. Baseline values for these parameters
are listed in Table 1. The value of k,, used in the scenarios
described in the results section (0.01 hr') is within the
range of values that can be derived from the medulloblas-
toma potential doubling times (T,,,) of 25 to 82 hours
described in the work of Ito et al [14].

The study by Ito et al also reported an observed clinical
doubling time of 480-576 hours. Since there is, currently,
no direct way of establishing k.4, we have estimated its
value. By assuming that the discrepancy between T, and
observed doubling times is due solely to cells shedding
from the tumor (and not from, for example, cell growth
slowing with increasing tumor size nor from host immu-
nologic attack of the tumor), we can establish an upper
limit value for kg, 4; this value is close to 0.01 hr!. Since
this value for kg4 has to be a gross overestimate (the
other factors mentioned above do indeed contribute to
the discrepancy between T, and the observed doubling
time), we have initially, arbitrarily, set it to a value that
may be more in line with clinical reality, on the order of
0.001 hr!'. We have taken k_y, to be 10% of the value of
Kgeq (0.0001 hrt), again as a rough estimate, with the
assumption that it is more difficult for cells to adhere to
other cells when they are flowing in the CSF. The values
for kg .4 and kg, are both modulated by the values yand
Y., as described above.

The value for Qg the volumetric flow rate and the spine
and brain CSF volumes are taken from Bergsneider [12].
The values used for the volumes of the brain and spine
CSF spaces are rough averages between what would be
expected in a child and in an adult.

The system of equations can be discretized and re-
arranged to yield the cell number at time i+1 as a function
of the cell numbers at time i, yielding the following sys-
tem of new equations:

(5)  Ngginr = Nggi+ At(kg N i+ Q(Ny, 63/ Vi, - N g3/ Vi) +
YiKshedNs,1,i = KadnNs i

(6) Ns,t,i+1 = Ns,t,i + At(kg,th,t,i 'kshest,t,i + Yfkaths,f,i)

(7)  Npgiv1 = Npgi+ At(kg N i + QN i/ Vs - Ny i/ V) +
YiKshedNb,1i = KadnNp, i)
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Table I: Parameter values used in the base case

http://www.ro-journal.com/content/1/1/48

Parameter Value Units Reference
K 0.0l hr! 14
Ky 0.0l hr! 14
D, 180 cGy 4
D, 180 cGy 4
Dy 130 <Gy 16
Q: 25 ml/hr 12
Vs 25 ml 12, 15
Vg 50 ml 12, I5

Kehed .00l hr! 14
Kadh .0001 hr! 14

(8) Ny giw1=Np,gi+ At(kg Ny, ¢ - KepegNp, ¢ + YagnNp, 1)

We then consider the situation in which a dose of radia-
tion, D, is applied to a compartment over a short period
of time, immediately prior to time i+1. We assume that D
instantaneously reduces the number of cells capable of

reproducing by a factor of e(P/Do) D, is a parameter tra-
ditionally used to describe radiosensitivity and represents
the dose required to reduce a clonogenic cell population
to (In 2)-1, or about 37%, of its initial value [16]. The D,
value ranged from 130 to 153 cGy for three cultured
medulloblastoma cell lines studied in vitro, with a mini-
mal shoulder to the curves as evidenced by the low extrap-
olation value of about 1.5 [17].

At time i+1 immediately following a dose of radiation, we
can modify the above system of equations to yield:

-D, /D,
(9)  Nygis /Do [Nggi + At(kg Ny i+ QN i/ Vi

Ns,f,i/vs) + Ytkshest,t,i_kaths,ﬂi)]

1= ¢

—-D, /D
(10) Ns,t,i+1 e S/ 0

KsnedNs, i+ ¥KadnNs )]

[Ny + Atk Ny,

s, t,i

-D,/D
(11) Npgi= e 0/Do [Np,gi + At(kg Ny, ¢i+Qe(Ny 5/ V-
N, £i/ Vo) + YkshedNb,1,i-KadnNb, i) |

e Du/Do

(12)
KshedNb, i+ YKadhNb £1) ]

[Npoi + Atk Ny -

Nb,t,i+1 =

where D, and Dy, are the doses administered in a single
fraction to the spinal and brain compartments, respec-
tively.

The equations were employed to numerically model vari-
ous clinical scenarios, with adjustments made in different
scenarios for the rate constants and for D,. Cell growth
was not allowed in compartment i (i.e., k,; was set to
zero) if the number of cells N was less than 0.05, since it
is at that point that the Poisson distribution, e, yields a
tumor control probability of about 95%. Since we have
not incorporated the effects of chemotherapy, a pre-
scribed dose of 54 Gy to the brain and 36 Gy to the spine,
administered at 1.8 Gy per day, has been used. This is the
standard treatment regimen for a patient with medullob-
lastoma who is free from clinical evidence of disease out-
side the brain and negative CSF cytology [4]. Note that the
model in its current formulation does not directly incor-
porate the effects of chemotherapy, which has emerged as
a central component of therapy for patients with medul-
loblastoma. Chemotherapy may improve radisoensitvity,
in addition to direct cytotoxic action on the tumor,
improving outcome, as discussed below.

In all of the clinical scenarios, we have set N}, to be 1 x
109 cells, roughly equal to the number of cells in one cm3
of tumor, at t = 0. We have set N to be equal to 1, initially,
in all other phases. Parameters for the initial set of scenar-
ios are listed in Table 1.

Results

Scenario |

In this scenario (Figure 3), results following a standard
course of treatment for the model allowing for flow (Q;=
25 ml/hr) and not allowing for flow (Q;= 0) are shown.
Cure is achieved in both settings. This fits clinical experi-
ence; 54 Gy of radiation to the brain/posterior fossa and
36 Gy to the spine has a high probability of curing medul-
loblastoma. By adjusting various parameters such as k
and D,, it is obvious that differing outcomes would be
observed. For example, if a patient's medulloblastoma
cells were more radioresistant (i.e., had a higher D value),
the outcome would not be as favorable. This is further dis-
cussed in scenario IV. Scenario I also shows that when
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flow between the spine and brain compartments is
allowed there is a rapid rise in N, and N .

Scenario Il

In this scenario II (Figure 4), results following the intro-
duction of a 3-week break in the spine portion of the treat-
ment are described. As described above, such breaks may
be necessitated when the acute reactions of the spine por-
tion of CSI become life-threatening. The deleterious
impact of treatment delay on outcomes in medulloblast-
oma has been documented in several retrospective series
[18-20]. The kinetic model recapitulates this finding. In
Figure 4a (with Q= 25 ml/hr), the introduction of the
break prevents sterilization of the spine phases, which
were nearing sterilization just prior to the break. Enough
cells remain to eventually repopulate all phases in the
model. In a version of the model not allowing for flow (Q;
= 0), shown in Figure 4b, the break never becomes an
issue for cure because the spine is never seeded with cells

http://www.ro-journal.com/content/1/1/48

from the brain. The brain compartment is easily sterilized
with 54 Gy.

Scenario Il

In this scenario (Figure 5), the importance of the parame-
ter values in the model results is illustrated. Using the
same scenario details as in scenario II, we have lowered
the value for kg4 and k.4, by one order of magnitude
each. This scenario models the response of tumors that are
'stickier' than those in the previous scenarios. Despite a
three-week break, tumor control is nonetheless achieved.
The reason is clear by comparison with Figure 5. By the
time that the break is instituted, the value of N in the solid
and fluid spine phases is significantly lower than in the
previous scenario; seeding from the brain did not occur to
the same extent since the cancer cells were less likely to be
shed into the CSF.

a a
|
1E+9 § — N 1E+9 4 — i —
1E+7 !- -HIL N gr — 1E+7 I —Ngr —
1E+5 § gt 1E+5 X 1’III. —Ngr | |
E v H‘ Negr 5 H.. Negr
£ 1E+3 : .E 1E+3 H
= l‘\l.‘ 3 L
= 1E+1 L = 1E+1
- L = L
C i T T T T T T T T T T T 3 Kt t t t t t t t t t t t
© 1E4 AT Z 3 WIH:) 57 % 9 W T 12 13 O EIygrT 73 W}Hb S 7 €& 9 W T O
183 % 163 f= %
! | .
1E-5 “‘.& Y 1E-5 1&1 —
|
1E7 L 1E7 L
Weeks Weeks
b b
1E+9 IE'H —_—Ner 1E+9
1E+T .;1__\ =Ner |— 1E+7
e —N B
| 1Ees i N:: — 1E+5
é L é 1E+3
= Z e+
3 t 3
© T S 1E1 4
1E-3
1E-5
1E7
Weeks
Figure 3 Figure 4

Scenario . a) Treatment results when flow is not allowed
between the brain and spine. The patient is cured. b) Treat-
ment results when flow is allowed. The number of cells in the
spine compartment quickly rises as a result of influx of cells
from the brain compartment. The patient is nonetheless
cured.

Scenario Il. A break lasting three weeks is instituted. a)
Treatment results when flow is not allowed. The number of
cells in the spine compartment never reaches an appreciable
level and the patient is cured. b) Tumor growth when flow is
allowed between the brain and spine. The patient is not
cured since the spine compartment is not sterilized.
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Cell Number

Weeks

Figure 5

Scenario lll. Treatment results when the value of k4, and
keeq are lowered. Despite the treatment break of three
weeks, cure is nonetheless achieved.

Scenario IV

In this scenario (Figure 6), the importance of the value of
D, is shown. We have used the original parameters as in
scenario I, but increased the D, value from 1.3 to 1.5 Gy.
In this case, as a result of increased tumor radioresistance,
cure is not achieved.

The importance of the model parameters

It is clear from the above scenarios, as well as from clinical
experience, that multiple factors likely determine if a
course of therapy is curative or not for medulloblastoma.
To illustrate the sensitivity of cure, cross-plot analyses of
treatment outcome as a function of several tumor and
transport parameters was undertaken. In Figure 7, the
impact of the values of k, ,, k, (, ¥, ¥, Dy and the initial size
of the brain tumor (N, ;) on the maximum duration of
treatment break duration is shown.

1E+9 §
1E+7 +

1E+5 4

1E+3 1
1E+1 4

Cell Number

1E-1 {

1E-3

1E-5

1E7 4
Weeks

Figure 6

Scenario IV. Treatment results when the value of D is
raised to 150 cGy. With greater tumor radioresistance, the
patient is not cured.
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Discussion

We have presented a two-compartment kinetic model that
describes tumor growth and flow within the closed system
of the craniospinal axis. Using model parameters derived
from known experimental and clinical data, the simple
model was able to generate results that are consistent with
clinical observations. By such validation, it can be prop-
erly used by clinicians to achieve a 'first-approximation'
prediction of various potential scenarios that may arise in
the treatment of medulloblastoma.

The model and equations presented herein are a simplifi-
cation of a complex process. Three major assumptions
have been made in the model's creation. First is the
assumption that the logarithm of cell survival is propor-
tional to dose, or that the fraction of remaining cells is

equal to e(P/Do) This is true for cells in the linear por-
tion of cell survival curves, but not in the shoulder region
where fractionated radiotherapy takes place. However,
there is a minimal shoulder to medulloblastoma cell sur-
vival curves, so this assumption is probably reasonable
[17].

Second, it has been assumed that the cells from the pri-
mary tumor are constantly disseminating in the CSF and
forming satellite nodules that can then themselves dis-
seminate immediately. This is almost certainly not the
case for all tumors, especially those early in their growth
[21].

Third is the fact that assumptions for the values of the rate
constants have been made. The process of cell shedding
from tumor masses in a circulating fluid, be it CSF or
blood, is not well characterized, and the rate constants
used in the analysis are extrapolations from limited data.
The value of k.4 and k, 4, are probably less than what was
used in the analysis, since there are other factors besides
cell shedding that make an observed doubling time for a
tumor longer than T, It is also well known that not all
tumors with access to the CSF circulate through it, or at
least not to levels that lead to clinical complications,
implying that kg,.q for these tumors is exceedingly low.
For example, CSI was once the treatment of choice for
intracranial germinomas [22,23]. However, more recent
studies evaluating whole ventricle-only or whole brain-
only treatment show that more limited treatment fields
can lead to cure in many patients, indicating that (clini-
cally relevant) spread to the spine is not a foregone con-
clusion in some diseases [24,25]. We have used the
modulating factors y; and 7, to describe the potential
impact of changes in the ky,.4and k, 4, values on treatment
outcome.
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Figure 7
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Cross-Plot Analyses. a) The interplay of k, and kgfon treatment outcome, with and without growth of tumor cells in the
fluid phase When k,is set to 0 (i.e., no growth of cells in the fluid phase), longer treatment breaks are allowed without threat-
ening cure. b) The effect of efficiency factor 7y is shown on treatment outcomes. Decreasing the efficiency of transfer of viable
cells from one phase to the other (i.e., decreasing y, and/or ;) reduces the number of tumor cells, permitting a longer treat-
ment break. c) The effect of independently varying y;and y, on treatment outcome is shown. High ¥, and low ¥;values versus the
converse are associated with a higher risk of treatment failure for extended treatment breaks at all k, values. d) The effect of
initial number of tumor cells in the brain parenchyma, Ny ., and radiosensitivity, Dy, on treatment outcome is shown. Failure is
more likely the higher the value of N, .and D,
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The assumption that there is no potential for 'escape' of
cells circulating in the CSF to the circulatory system has
also been made. This is a reasonable assumption given the
exceeding rarity of extracranial metastases [4]. Many
extracranial metastases are in fact intraperitoneal in ori-
gin, and arise in the setting of shunts that divert CSF into
this space.

Finally, the assumption that the CSF contents are homog-
enous throughout the course of the craniospinal axis has
been made. This may not be the case in all circumstances
[26]. Incorporation of changes in cell density in the differ-
ent compartments could be incorporated in future ver-
sions of the model. If tumor cell density is higher in the
spine than in the brain, spine treatment breaks would
likely lead to lower cure rates.

Why one tumor type can spread freely in the CSF and
another remains more localized (i.e., why k.4 and/or
k.4 differs between tumors) is not known. Molecular
determinants of tumor cell invasiveness, such as cadherin
expression, probably play a role. E-cadherin governs cell-
cell contact and reduced expression of E-cadherin allows
cells to separate from their neighbors and invade locally
and distantly. Utsuki et al found E-cadherin was not
expressed on any of the medulloblastoma cells studied
[27]. Asano et al showed that reduced levels of N-cadherin
were seen in astrocytic tumors that had disseminated via
the CSF [28]. The values of kg4 and k,4, may in part be
functions of the status of proteins such as the cadherins in
tumors.

Although the growth rate constant for tumors used in the
analysis is a reasonable value, the growth rate of cells cir-
culating in the cerebrospinal fluid is less well understood.
This environment may or may not be conducive to cell
growth. Figure 7 shows the modest difference on treat-
ment outcome between allowing versus not allowing
tumor cell growth in the fluid phase of the model.

Despite these limitations, the model provides insight into
the relationship between tumor growth, CSF flow, and
radiation-induced cell killing. Modest changes in rate con-
stant values, tumor growth rates, and/or tumor radiosen-
sitivity will not change the general conclusions that
emerge from it. Figure 7 again illustrates the potential
impact of changes on certain of the model parameters on
treatment outcome.

The cross-plots shown in Figure 7 may have direct clinical
value for oncologists. Success or failure of a treatment reg-
imen is quite sensitive to small variations in the starting
tumor cell number and radiosensitivity. The most direct
method of achieving a smaller initial tumor size is to per-
form a more complete surgery, though a maximum safe

http://www.ro-journal.com/content/1/1/48

resection frequently dictates that some gross tumor be left
behind to minimize morbidity. Alternatively, chemother-
apy can reduce the tumor burden when administred
before and/or with radiotherapy. In addition, chemother-
apy may substantially increase radiosensitivity (i.e.,
decrease Dy).

The parallels between CSF dissemination and hematoge-
nous metastasis are obvious, but one point bears special
mention. In our model, completion of the brain treat-
ment initially leads to cure within this space (i.e.,, no
tumor cells left). However, if the spine is left untreated, it
will eventually re-seed the brain space and lead to tumor
growth there. In this setting, the spine can be thought of
as the 'primary' site and the brain as the 'metastatic’ site.
With the primary site left uncontrolled, the chance of
developing metastatic sites is ultimately inevitable in this
model. Many in the clinical oncology community have
emphasized the importance of local therapies to prevent
distant failures [29]. Aggressive attempts at local control
can minimize such failures.

Conclusion

Craniospinal irradiation remains an important compo-
nent of the treatment of medulloblastoma. It is critical
that clinicians are aware of the propensity of medulloblas-
toma cells to disseminate throughout the craniospinal
axis. The model presented in this paper uses established
medulloblastoma-related parameters to describe this dis-
semination and predict its complications. It reinforces the
importance of good clinical practices, such as minimizing
the duration of treatment breaks in the irradiation of the
spinal fields, to improve the chance of favorable outcome.
The model also suggests that the addition of other thera-
peutic modalities, such as chemotherapy, can significantly
reduce the risk of treatment failure by relatively small
improvements in radiosensitvity and/or lower tumor bur-
den.
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