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Abstract 

Objective This study aimed to present a deep-learning network called contrastive learning-based cycle generative 
adversarial networks (CLCGAN) to mitigate streak artifacts and correct the CT value in four-dimensional cone beam 
computed tomography (4D-CBCT) for dose calculation in lung cancer patients.

Methods 4D-CBCT and 4D computed tomography (CT) of 20 patients with locally advanced non-small cell lung 
cancer were used to paired train the deep-learning model. The lung tumors were located in the right upper lobe, 
right lower lobe, left upper lobe, and left lower lobe, or in the mediastinum. Additionally, five patients to create 
4D synthetic computed tomography (sCT) for test. Using the 4D-CT as the ground truth, the quality of the 4D-sCT 
images was evaluated by quantitative and qualitative assessment methods. The correction of CT values was evaluated 
holistically and locally. To further validate the accuracy of the dose calculations, we compared the dose distributions 
and calculations of 4D-CBCT and 4D-sCT with those of 4D-CT.

Results The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the 4D-sCT increased 
from 87% and 22.31 dB to 98% and 29.15 dB, respectively. Compared with cycle consistent generative adversarial net-
works, CLCGAN enhanced SSIM and PSNR by 1.1% (p < 0.01) and 0.42% (p < 0.01). Furthermore, CLCGAN significantly 
decreased the absolute mean differences of CT value in lungs, bones, and soft tissues. The dose calculation results 
revealed a significant improvement in 4D-sCT compared to 4D-CBCT. CLCGAN was the most accurate in dose calcula-
tions for left lung (V5Gy), right lung (V5Gy), right lung (V20Gy), PTV (D98%), and spinal cord (D2%), with the relative 
dose difference were reduced by 6.84%, 3.84%, 1.46%, 0.86%, 3.32% compared to 4D-CBCT.

Conclusions Based on the satisfactory results obtained in terms of image quality, CT value measurement, it can be 
concluded that CLCGAN-based corrected 4D-CBCT can be utilized for dose calculation in lung cancer.
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Introduction
Radiation therapy is one of the important methods of 
treating cancer. However, radiation may cause side effects 
on surrounding normal tissues, especially in organ treat-
ment with precise positioning of respiratory motion, 
such as liver, lung, and mediastinum [1, 2]. In addition to 
intensity-modulated radiotherapy for lung cancer, stereo-
tactic body radiotherapy (SBRT) is clinically applied for 
early-stage non-small cell lung cancer patients who are 
unsuitable for or refuses surgery [3, 4]. SBRT requires a 
large single dose, is more challenging in positioning and 
treatment. Using only three-dimensional (3D) imaging 
can cause the blurring of anatomical structures, whereas 
four-dimensional (4D) imaging can dynamically display 
the movement of organs in radiotherapy [5]. When the 
target position is affected by respiratory motion, the uti-
lization of 4D-CT for localization and treatment plan-
ning can minimize the impact of respiratory-induced 
uncertainties on the displacement of the target position. 
Subsequently, the choice of a 4D-CBCT has practical 
significance for the repetition of target area location and 
dose during treatment [6]. Meanwhile, adaptive radio-
therapy (ART) based on CBCT, which changes the treat-
ment plan according to the transformation of the target 
area during sub-treatment, has clinical significance [7, 
8]. However, the relevant studies are primarily limited to 
3D-CBCT at present. Studies have shown that 4D-CBCT 
and 4D-CT used for adaptive radiotherapy (ART) can 
mitigate the impact of interfractional changes while 
reducing the PTV volume and minimizing radiation dose 
to normal tissue [9–11]. Harsolia et  al. [9] compared 
various planning techniques including 3D-conformal, 
4D-union, 4D-offline adaptive, and 4D-online adaptive 
to enhance the accuracy and decrease the planning tar-
get volume (PTV) margin in image-guided radiotherapy 
using 4D-CBCT. The results revealed that 4D-CBCT 
is more effective in guiding adaptive radiotherapy than 
3D-CBCT. Nonetheless, 4D-CBCT suffers from low 
image contrast and poor quality due to the undersam-
pling of the projections of each temporal phase [12]. 
Additionally, issues such as scatter artifacts, image lag, 
beam hardening, and patient movement during acquisi-
tion result in distorted CT values [13]. ART is a prom-
ising vision for the future, and these challenges present 
hurdles to the clinical implementation of 4D-CBCT for 
dose calculation if it were to be used in ART [9, 11].

Research in the field of CBCT value correction is pri-
marily based on three types of artifacts: scatter, motion, 
and streak artifacts. The correction of scatter artifacts 
can be achieved through Monte Carlo simulation [14], 
which involves simulating the transmission, scattering, 
and absorption of X-rays in human tissues to improve 
the accuracy of CBCT dose calculation. However, the 

motion artifacts remaining in CBCT can cause blurring 
of tumors and tissues within the lungs. In addition to cor-
recting motion artifacts, the use of 4D-CBCT in clini-
cal practice effectively reduces the generation of motion 
artifacts but inevitably causes streak artifacts due to 
undersampling. To reduce streak artifacts, Li [15] et  al. 
improved the image quality by increasing the scanning 
time and scanning dose, but it results in increased patient 
irradiated dose and reduced clinical efficiency. Accord-
ingly, some studies use iterative algorithms such as total 
variation regularization [16] and non-local means [17] to 
protect the edges of the image and suppress noise. Wang 
et al. [18] proposed motion-compensated reconstruction 
based on prior knowledge to improve image quality. Con-
sidering the repetitiveness of patient respiratory motion, 
Huang et  al. [19] optimized the registered deformation 
vector field (DVF) on this basis to further improve the 
efficiency and accuracy of reconstruction. In recent years, 
deep learning has been extensively used in medical-image 
classification, segmentation, denoising, and super-res-
olution reconstruction. It is also gradually being used in 
the image correction of 4D-CBCT. The primary applica-
tion approaches include deep-learning models combined 
with other correction methods (4D-AirNet (2020) and 
CNN-MoCo (2023)) and deep-learning network models 
only. Given the over-smooth of image edges and con-
trast reduction caused by iterative algorithms, Jiang et al. 
[20] proposed SR-CNN (2018) to improve the sharpness 
of edges and anatomical structure details in undersam-
pled CBCT. Sun [21] et  al. proposed a model of U-net 
combined with transfer-learning strategy (2020). It uses 
transfer learning to fine-tune the 4D-CBCT enhanced 
by U-net, resulting in significant improvements in struc-
tural similarity index measure (SSIM) and peak signal-
to-noise ratio (PSNR) compared with before fine tuning. 
Later, the RDN residual dense network (2020) proposed 
by Madesta [22] et al. simulates streak artifacts to achieve 
correction of 4D-CBCT without affecting the anatomical 
information.

The correction of 4D-CBCT by generating 4D-sCT 
is a research hotspot. Thummerer et  al. [23] used deep 
convolutional networks to generate synthetic CT (sCT) 
through paired training of a single-phase image for dose 
calculation in lung-cancer radiotherapy. Considering that 
the training depends on the reproducibility of patient’s 
breathing, 4D-CBCT cannot use paired supervised data 
for model training. Usui et  al. [24] used cycle consist-
ent generative adversarial networks (CycleGAN) for the 
unpaired training of images from two thresholds, 4D-CT 
and 4D-CBCT. However, due to the limited training data 
and training with only a single time phase during train-
ing, some bones are not fully recovered. The robustness 
also requires further improvement.
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In the present study, 4D-CT and 4D-CBCT were paired 
trained in a network called contrastive learning (CL)-
based cycle generative adversarial networks (CLCGAN), 
which combined the latest CL and CycleGAN [25–27]. 
CLCGAN was used to explore the mutual information 
present in 4D-CT and 4D-CBCT during training, aim-
ing to train a model capable of generating images with 
reduced streak artifacts. Ideally, CLCGAN selectively 
generates images with high similarity in the feature space. 
To evaluate the model performance, quality and CT val-
ues were quantitatively assessed, and the accuracy of 
dose distribution and calculation of generated images 
was verified.

Materials and methods
Patient data
4D images of 20 patients with thoracic tumors were 
selected to train and test the deep-learning model. 
Patient data were obtained from a publicly available 
dataset in the Cancer Imaging Archive (TCIA, http:// 
www. cance rimag ingar chive. net/) created by the National 
Cancer Institute [28, 29]. All the patients had locally 
advanced non-small cell lung cancer and received con-
current chemoradiotherapy, with a total dose ranging 
from 59.4 to 70.2 Gy delivered in daily 1.8 or 2 Gy frac-
tions. All patient clinical information used for training 
and testing is shown in Table 1. Throughout their treat-
ment, the patients all underwent 4D-CT imaging at least 
once and most received 4D-CBCT imaging during treat-
ment fractions. Consequently, the dataset consisted of a 
total of 82 4D-CT and 507 4D-CBCT images from these 
20 patients.

Image data
4D‑CT
4D-CT images were acquired on a 16-slice helical CT 
simulator (Brilliance Big Bore, Philips Medical Systems, 
Andover, MA, USA) under scanning conditions with a 
tube voltage of 120 kVp, tube currents of 50–114  mA, 
and exposure times of 3.53–5.83 ms. The respiratory sig-
nals obtained from the RPM respiratory gating system 
were divided into 10 phases from 0 to 90% in phase order, 
with the 0% phase corresponding to the end of inspira-
tion. The slice thickness for each phase was 3  mm, and 
the image size was 512 × 512 with a pixel spacing of 
0.9766 × 0.9766  mm2.

4D‑CBCT
4D-CBCT images were acquired on a commercial CBCT 
scanner (On-Board Imager v1.3, Varian Medical Systems, 
Inc.) with 360° scanning at a tube voltage of 125 kVp, a 
tube current of 20 mA, and an exposure time of 20 ms. 
To promise the appropriate calculation of radiotherapy 
dose, CT number to electron density (CT-ED) calibra-
tion was performed with a CIRS (Norfolk, Virginia, US) 
phantom named Model 062M Electron Density Phantom 
on 4D-CBCT. During scanning, the respiratory surro-
gate used for 4D-CT were integrated into the 4D-CBCT 
acquisition system. The projection was sorted into the 
same 0–90% phases according to respiratory signal of 
surrogate. Each phase was reconstructed using the Feld-
kamp–Davis–Kress reconstruction algorithm with a slice 
thickness of 3 mm, an image size of 512 × 512, and a pixel 
spacing of 0.8789 × 0.8789  mm2.

Table 1 Clinical information for 20 patients

The table lists the clinical overall stage, tumor location and tumor volume of 20 patients. And the tumor locations including right upper lobe(RUL), right lower 
lobe(RLL), left upper lobe(LUL), left lower lobe(LLL) of lung and mediastinum

Patient Overall stage Location Tumor 
volume(cc)

Patient Overall stage Location Tumor 
volume(cc)

1 IIIA LUL 18 11 IIIA RUL 13

2 IIIA RUL 12 12 IIIB RUL 142

3 IIIB RLL 392 13 IIIB RUL 75

4 IIIB RLL 55 14 IIIB RUL 27

5 IIIA RLL 75 15 IIIB LUL 171

6 IIIA RUL 31 16 IIIB RUL 58

7 IIIA RLL 179 17 IIIB LLL 47

8 IIIB RUL 7 18 IIIA LLL 33

9 IIIA LUL 33 19 IIIA mediastinum 143

10 IIIA RUL 10 20 IIA LLL 78

http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/
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4D‑sCT based on CLCGAN
Image preprocessing
The training dataset comprised 4D images of 10 phases 
from 20 patients. Each phase comprised 50 slices, with a 
total of 10,000 4D-CT and 10,000 4D-CBCT slices. Each 
patient was centered on the lung cancer region, includ-
ing the whole lung. Each phase of 4D-CT images were 
adjusted to the same size and resolution as the 4D-CBCT 
images using an open-source registration tooltik, elastix 
[30, 31]. The adjusted images were used for paired train-
ing with CLCGAN, and random flipping was applied 
during training to achieve data augmentation.

Network architecture
The CLCGAN network model applied the idea of CL 
to the dual-domain CycleGAN. It used only the similar 
features in the dual domain for image generation to real-
ize the removal of streak artifacts. Therefore, CLCGAN 
comprised two branches: CycleGAN and CL. Cycle-
GAN realized the mutual mapping of CBCT/CT to CT/
CBCT to obtain the feature information of two samples. 
CL implemented constraints on the feature space to bet-
ter guide image generation. Figure 1a shows the network 
architecture of CLCGAN. The implementation details of 
these two branches are described as follows.

CycleGAN contained two symmetric sub-networks for 
generating 4D-sCT (CT → sCBCT → sCT) and 4D-sCBCT 
(CBCT → sCT → sCBCT). Each sub-network comprised 
two generators and one discriminator. Figure  1b shows 
the architecture of generators, where each generator 
comprised a three-layer encoder, a nine-residue block 
structure, and a three-layer decoder, whereas the dis-
criminator comprised a four-layer encoder. The two sub-
networks were simultaneously trained to extract features 
from CBCT and CT and thus form a feature space for 
regularization. The network performance was improved 
by optimizing the loss function between the generated and 
original image until the discriminator cannot distinguish 
between sCT, sCBCT and CT, CBCT, the model tends 
to converge. Ultimately, the removal of streak artifacts in 
4D-CBCT was achieved by generating 4D-sCT, although 
the effect of artifact removal was weak. Accordingly, we 
combined CL to constrain the feature space and realize 
streak artifacts removal in latent space. CL is an unsuper-
vised learning. The main idea is to set low-difference fea-
tures with similar or common properties in CBCT and CT 
to “positive” and vice versa to “negative”. During training, 
only “positive” features were used for image reconstruc-
tion or image recovery. To maintain the model architec-
ture, features were directly extracted from the encoder 
of the generator, and the features from each layer were 
sent to a two-layer multilayer perceptron. In the feature 

embedding space, the feature x̂ from one side of the CT or 
CBCT served as a query, whereas the other side contained 
the positive feature x̂+ and k negative feature { ̂x−i }ki−1 .  
Positive features were proximity to query, so they were 
correlated with each other (none streaking →  ← none 
streaking); otherwise, they were detached from each other 
(streaking ←  → none streaking). To visualize the impact of 
CL, the features extracted for image generation with and 
without CL were visualized using t-distributed Stochas-
tic Neighbor Embedding (t-SNE) [32]. Results are shown 
in Fig. 2. The two features had closer distances and over-
lapped more after using CL. When using t-SNE to com-
pare two features, if there is some degree of similarity 
between the two features, the corresponding data points in 
the t-SNE’s two-dimensional coordinates will completely 
overlap and embed each other, rather than exhibiting dis-
tinct boundaries. Therefore, the features selected for gen-
erating the sCT were free of streak artifacts.

Loss function
In the experiment, the final loss function included a 
loss function Lcont for enforcing the distribution of the 
specified features, a loss function Ladv for minimizing 
the difference between the expected and predicted val-
ues of 4D-CT/4D-CBCT, and a loss function Lcyc for 
minimizing the difference between the original images 
of 4D-CT/4D-CBCT and the generated images. To fur-
ther preserve the structure and content information of 
the images, a frequency loss function Lfreq was utilized 
to fully leverage the frequency domain information. The 
overall loss function is represented as

�i is the weight parameter for each item, and we set �i, 
�2, �3 and �4  to 2, 1, 1, and 0.01 respectively.

Contrastive loss: The feature was normalized to 
f = E(x̂), f + = E(x̂+), f

−
i = E(x̂−i ) by formula, and the 

function of the canonical feature distribution is denoted 
as

sim(u, v) represents the cosine similarity function 
between two normalized feature vectors, and τ repre-
sents the temperature parameter, which is set to 0.07.

(1)Ltotal = �1Lcont + �2Lcyc + �3Ladv + �4Lfreq ,

(2)

Lcont(GSN , GNS)

= Es∼S,n∼N −log
sim(f , f +)

sim(f , f +)+ N
i=1 sim(f , f −i )

,

(3)sim(u, v) = exp

(

uτ v

�u��v�τ

)

,
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Fig. 1 Architecture and module details of the CLCGAN network: a illustrates the overall architecture of CLCGAN; and b showcases the detailed 
principle of contrastive learning, where (b−1) and (b−2) show the internal diagrams of the generator and discriminator, respectively
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Adversarial loss: The discriminator DN/DS was 
trained to make the discriminating output on 
4D-CT/4D-CBCT close to 1 and the generated 
4D-sCT/4D-sCBCT image output close to 0. Minimize 
Ladv . Thus, the final generator made the output of dis-
criminator on generated images as close to 1 as possi-
ble. Therefore, the adversarial loss function is denoted 
as

Cycle consistency loss: The generator GSN/GNS was 
trained to minimize Lcyc so that the difference between 
the generated image and the real sample s/n was mini-
mized. The cycle consistency loss function is denoted 
as

Frequency loss:

Parameter selection
During training, a batch size of 1 and instance normali-
zation were used. The training images were randomly 
cropped into 512 × 512 blocks in a paired manner for 

(4)
Ladv(GSN , DN ) =En∼N [logDN (n)]

+ Es∼S[log(1− DN (GSN (s)))],

(5)
Lcyc = En∼N [�GSN (GNS(n))− n�1]+ Es∼S[�GNS(GSN (s))− s�1],

(6)

Lfreq =En∼N [||FT (GS2N (GN2S(n)))

− FT (n)||22] + Er∼R[||FT (GN2S(GS2N (r)))

− FT (r)||22],

CL. In the training process, Adam optimizer with 
parameters β1 = 0.5 and β2 = 0.999 and a learning rate of 
0.0002 were adopted, and the model was trained for 100 
epochs starting from 0. The entire network based on 
the PyTorch framework was implemented on a deep-
learning server (Inter (R) Xeon (R) Gold 6133 CPU @ 
2.50 GHz, NVIDIA A100 80 GB, 256 GB).

Evaluation methods
Image‑quality assessment
To evaluate the effect of the CLCGAN model in remov-
ing image artifacts, we selected five cases comprising 2500 
untrained paired 4D-CT and 4D-CBCT slices for testing. 
The resolution and size of the testing data were kept con-
sistent with the training data. The evaluation comprised 
two parts: comparing the generated 4D-sCT with the 
original 4D-CT, and comparing the 4D-sCT generated 
using the CLCGAN and CycleGAN network individually.

To quantitatively evaluate the image quality, the 
4D-CBCT, 4D-sCT based on CycleGAN, and CLCGAN 
were measured against the original 4D-CT by using SSIM 
and PSNR. To enable better use of 4D-sCT for guidance 
and dose calculation in lung-cancer radiation therapy, 
the CT values of 4D-CBCT and 4D-sCT were measured 
against the 4D-CT using mean error (ME) and mean 
absolute error (MAE). To ensure an accurate evaluation 
of the training results, the precision of the registration 
was measured by calculating mutual information (MI). 
Lastly, paired t-tests were performed in Statistical Prod-
uct and Service Solutions (SPSS) software to assess sig-
nificant differences between all 4D-sCT and 4D-CBCT 

Fig. 2 t-SNE Plots of Learned Features with and without CL. a and b represent the feature distribution obtained without and with the incorporation 
of contrastive learning, respectively
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results. Given the conduct of multiple hypothesis tests, 
all p-values were assessed following Bonferroni correc-
tion. When the p-value is less than 0.003, the results are 
significantly different. The corresponding expressions are 
shown below:

In the expression of SSIM, X represents 4D-CBCT and 
4D-sCT, and Y represents 4D-CT. µx and µy denote the 
average pixel values of images X and Y, respectively. σx 
and σy represent the variances, whereas C is a regulari-
zation constant with C1 and C2 taken as (0.01 × 2000)2 
and (0.03 × 2000)2, respectively. The dynamic range 
of the image pixels was 4095. In the expressions of 
mean-square error (MSE), ME, and MAE, X represents 
4D-CBCT and 4D-sCT, whereas Y represents 4D-CT. 
M and N represent the width and height of the input 
images, respectively. The expression for PSNR was 
obtained by dividing the maximum value by the MSE. In 
formulas (12) (13) (14) (15), X and Y denote two images, 
where hi represents the sum of pixel points in image Y 

(7)

SSIM(X ,Y ) =
(2µXµY + C1)(2σXσY + C2)

(µ2
X + µ2

Y + C1)
(

σ 2
X + σ 2

Y + C2

) ,

(8)PSNR = 10 log10
max

∣

∣X
(

i, j
)
∣

∣

2

MSE
,

(9)MSE =
1

M × N

M
∑

i=1

N
∑

j=1

(X(i, j)− Y (i, j))2,

(10)ME(X ,Y ) =
1

M × N

M
∑

i=1

N
∑

j=1

(X(i, j)− Y (i, j)),

(11)

MAE(X ,Y ) =
1

M × N

M
∑

i=1

N
∑

j=1

|X(i, j)− Y (i, j)|,

(12)pi = hi/

(

N−1
∑

i=1

hi

)

,

(13)H(Y ) = −

N−1
∑

i=0

pi log pi,

(14)H(X ,Y ) = −
∑

x,y

pxy
(

x, y
)

log pxy(x, y),

(15)MI(X ,Y ) = H(X)+H(Y )−H(X ,Y ),

with gray i, N represents the gray level in image Y, and 
Pi represents the probability of gray i. H(Y) denotes the 
entropy of an image, H(X,Y) denotes the joint entropy of 
X and Y. MI reflects the degree of information contained 
between two images, with value ranging from 0 to posi-
tive infinity. The higher the similarity or overlap between 
images, the smaller the joint entropy and the greater the 
MI. After conducting paired t-tests, statistical signifi-
cance was observed in the SSIM, PSNR, ME, MAE and 
MI of the 4D-sCT images.

To measure the local information of CT values, the 
4D-CBCT, 4D-CT, and 4D-sCT images of five patients 
were outlined with 35 × 35, 15 × 15, and 25 × 25 regions 
of interests (ROIs) in the lungs, bones, and soft tissues. 
The mean CT values were then measured. The CT val-
ues indicated that the mean CT value difference between 
4D-sCT and 4D-CT was smaller, and the images gener-
ated based on CLCGAN had the smallest differences. 
Moreover, to evaluate the CT value errors of the lung 
tumor, the 4D-CBCT, 4D-CT, and 4D-sCT images of five 
patients were outlined with 15 × 15 ROIs in the region of 
the lung tumor. The results indicated that the CT value 
error of CLCGAN is smaller.

Dose evaluation
To assess the accuracy of dose calculations, the dose dis-
tributions of 4D-CT, 4D-CBCT, and 4D-sCT were com-
pared and the relative percentage difference (RPD) was 
calculated. Each phase of 4D-CT for five tested patients 
was contoured for target delineation and the GTV and 
PTV contours averaged by ten phases were used for 
volumetric-modulated arc therapy planning by using a 
planning system (Monaco 5.1, Elekta). A prescription 
dose of 6000 cGy over 30 days was applied. Subsequently, 
the 4D-CBCT and 4D-sCT generated by both methods 
were rigidly registered with the reference 4D-CT, and the 
structure contours and treatment plans from the refer-
ence 4D-CT were copied to each image. Dose calcula-
tions were performed on all images, and dose–volume 
histogram (DVH) parameters were assessed for the PTV, 
left lung, right lung, and spinal cord. For the PTV, the 
dose at D98% and D2% was calculated, whereas for the 
spinal cord, the dose at D2% was calculated. For the left 
and right lungs, the lung volume was calculated at V20Gy 
and V5Gy, respectively.

In the expression of RPD, A represents the dose or vol-
ume of 4D-CT, and F represents the dose or volume of 
4D-CBCT and 4D-sCT (Cyc, and CLC).

(16)RPD =
|A− F |

(A+ F)/2
× 100%,
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Results
Tables 2 and 3 present the results of image-quality evalu-
ation. CLCGAN improved its performance in terms of 
SSIM and PSNR, increasing from 0.771 and 22.31  dB 
to 0.980 and 29.15  dB, respectively. The ME and MAE 
of overall CT values also decreased from −  116.70 and 
220.29 to 3.20 and 70.76. Additionally, compared with 
CycleGAN, CLCGAN showed an improvement of 0.11 
and 0.42 dB in SSIM and PSNR, respectively, and a reduc-
tion of 0.25 and 3.39 in ME and MAE. After t tests, we 
found that all the improvements and reductions were sta-
tistically significant, and the improvement of CLCGAN 
in SSIM and PSNR also had statistical significance.

Additionally, Table  4 illustrates the MI between the 
registered 4D-CBCT, the 4D-sCT generated using two 
methods and the 4D-CT. The results reveal that the MI 
between the registered 4D-CBCT and 4D-CT is only 
0.735, whereas there is a substantial improvement in 
the accuracy of 4D-sCT (p < 0.01), with CycleGAN and 

CLCGAN yielding respective improvements of 0.568 
and 0.588. After t tests, we found that the improvements 
of the 4D-sCT were statistically significant, and the 
improvement of CLCGAN based on CycleGAN had sta-
tistical significance.

To illustrate the qualitative evaluation results of the 
images, we provided image slices of all tested patients, 
including 4D-CBCT, 4D-CT, and two types of 4D-sCT 
(Figs.  3 and 4). Figure  3 displays the slices in three 
directions for the first tested patient, whereas Fig.  4 
shows axial slices for the remaining four patients. 
Under the same window and width, we observed that 
CLCGAN generated images with fewer artifacts in the 
lungs, more continuous lung texture, and clearer and 
more accurate details than CycleGAN. CLCGAN also 
performed better in restoring bone tissue and effec-
tively recovering details of muscle and soft tissue.

To visually demonstrate the results of CT value cor-
rection, we selected one patient and performed sub-
traction between 4D-sCT and 4D-CT, as well as 
between the two types of 4D-sCT. Thus, we obtained 
axial CT value difference images (Fig.  5). Both meth-
ods were found to effectively preserve the overall struc-
ture of the 4D-sCT images. However, the CT value 
error was evidently smaller in the images generated 
by CLCGAN compared with those by 4D-CT. Particu-
larly in the lungs and some bone structures, the differ-
ence between the images generated by CLCGAN and 
the 4D-CT images was smaller than that between the 
images generated by CycleGAN. Furthermore, we con-
ducted a subtraction of dose distribution between the 
4D-CBCT, 4D-sCT and 4D-CT for the patient, result-
ing in the dose difference images (Fig. 5). The findings 
indicate that the dose difference between the 4D-sCT 
generated by CLCGAN and the 4D-CT is the most 
minimal.

Figure  6 depicts the quantitative evaluation of the 
localized 3D ROI and the mean CT difference in the 
ROI at different phases for all tested patients under the 
same window and width. CLCGAN showed significant 
improvements in the restoration of the lung, bone, and 
soft tissue. The absolute mean differences from 4D-CT 

Table 2 Evaluation Results of Structural Similarity and Peak Signal-to-Noise Ratio

The table includes the mean ± variance of SSIM and PSNR based on 4D-CT for five patients. The significance of 4D-sCT was evaluated using paired t test, and the 
significance of the differences between 4D-sCT generated by the two methods was assessed

"–" indicates that no comparison was made

Dataset SSIM P value(vs 
4D‑CBCT)

P value(vs Cyc) PSNR(dB) P value(vs 
4D‑CBCT)

P value(vs Cyc)

4D-CBCT 0.771 ± 0.19 - - 22.31 ± 1.21 - -

4D-sCT(Cyc) 0.969 ± 0.05 p < 0.01 - 28.73 ± 1.57 p < 0.01 -

4D-sCT(CLC) 0.980 ± 0.02 p < 0.01 p < 0.01 29.15 ± 1.73 p < 0.01 p < 0.01

Table 3 Evaluation results of mean error and mean absolute 
error

The table includes the mean ± variance of ME and MAE based on 4D-CT for five 
patients. The significance of 4D-sCT was evaluated using paired t test

"–" indicates that no comparison was made

Dataset ME(HU) P 
value(vs 
4D‑CBCT)

MAE(HU) P value(vs 
4D‑CBCT)

4D-CBCT − 116.70 ± 30.83 – 220.29 ± 337.39 -

4D-sCT(Cyc) 3.45 ± 11.31 p < 0.01 74.15 ± 71.25 p < 0.01

4D-sCT(CLC) 3.20 ± 8.25 p < 0.01 70.76 ± 68.21 p < 0.01

Table 4 Evaluation results of mutual information

The table includes the mean ± variance of MI based on 4D-CT for five patients. 
The significance of 4D-sCT was evaluated using paired t test

"-" indicates that no comparison was made

Index 4D‑CBCT 4D‑sCT(Cyc) 4D‑sCT(CLC)

MI 0.735 ± 0.08 1.303 ± 0.08 1.323 ± 0.08

P value(vs 4D-CBCT) – p < 0.01 p < 0.01

P value(vs Cyc) – – p < 0.01
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Fig. 3 Structural Images of Patient 1 in Different Directions. The four columns represent 4D-CBCT, 4D-CT, 4D-sCT(Cyc), and 4D-sCT(CLC) images, 
respectively. All images are displayed at the same window width and window level

Fig. 4 Structural images of four test patients. The four columns represent 4D-CBCT, 4D-CT,4D-sCT(Cyc), and 4D-sCT(CLC) images. All images are 
displayed at the same window width and window level
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decreased from 137.31, 183.15, and 50.67 to 66.28, 62.91, 
and 43.72, respectively. Furthermore, the artifact removal 
of lungs, bones, and soft tissues was also significantly 
improved with CLCGAN relative to CycleGAN, with 
decreases of 18.00, 20.94, and 5.7, respectively.

The Table 5 provides the CT value errors and the errors 
for each patient was acquired by delineating the regions 
of interest for each phase. Comparing the results of 
4D-CBCT and 4D-sCT with the ground truth of 4D-CT, 
the errors of 4D-sCT are smaller than those of 4D-CBCT, 
and CLCGAN demonstrates the lower errors for the lung 
tumor compared with CycleGAN.

The dose-calculation results are shown in Tables  6 
and 7. They show the average dose difference relative to 
4D-CT for the five patients and the dose difference rela-
tive to 4D-CT for each patient, respectively. In all dose-
calculation results, the 4D-sCT showed a significant 
improvement compared with 4D-CBCT, with the rela-
tive difference close to zero. CLCGAN performed most 
accurately in dose calculation for the left lung (V5Gy), 
the right lung (V5Gy, V20Gy), the therapeutic target 
area (D98%), and the spinal cord (D2%). Specifically, we 
showed dose distribution and dose–volume histograms 
for one tested patient (Fig. 7). CT1, CT2, CT3, and CT4 
represent the dose distribution for the reference 4D-CT, 

4D-sCT (CLCGAN), 4D-CBCT, and 4D-sCT (Cycle-
GAN), respectively. Evidently, CT2 closely resembled the 
dose curve of the reference CT in terms of the decrease 
in dose in the target region and the dose at 50% volume 
for the right lung and spinal cord.

Discussion
4D-CBCT is an imaging technique that can display real-
time lung motion. It has great practical significance in 
conventional and SBRT for lung cancer. However, fac-
tors such as streak artifacts caused by insufficient projec-
tion acquisition at each phase and scatter artifacts during 
acquisition can affect the accuracy of CT values. Such 
distortion can reduce the imaging quality of 4D-CBCT, 
make dose calculations imprecise (Fig. 7), and hinder the 
progress of 4D-CBCT image-based ART [24]. Therefore, 
we proposed a network framework called CLCGAN to 
utilize the feature-extraction capability of CL and thus 
improve the image quality of the generative model.

To reduce the problem of slight anatomical dis-
placement caused by patient respiratory motion [34], 
we performed deformable registration of 4D-CT and 
4D-CBCT before training. The registered 4D-CT was 
used as ground truth for validation. During training, we 
selected 10 phases. CycleGAN achieved better results 

Fig. 5 CT value difference maps and dose difference maps of Patient 2. The first row is the CT value difference, and the second row is the dose 
difference. 5‑1 shows the difference between 4D-sCT (Cyc) and 4D-CT. 5‑2 displays the difference between 4D-sCT (CLC) and 4D-CT. 5‑3 represents 
the difference between 4D-sCT (Cyc) and 4D-sCT (CLC). 5‑4 shows the difference between 4D-CBCT and 4D-CT. 5‑5 displays the difference 
between 4D-sCT (Cyc) and 4D-CT. 5‑6 displays the difference between 4D-sCT (CLC) and 4D-CT
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in bone recovery in 4D-sCT than training with a single 
phase [24]. However, according to Figs.  3 and 4. severe 
artifacts remained in the lungs, and the lung texture 
was unclear. These blurry artifacts can interfere with the 

clinical assessment of small structures, such as blood ves-
sels and airways. Our network learned to remove streak 
artifacts through feature selection before generating the 
images. As a result, the 4D-sCT obtained by CLCGAN 
can greatly reduce the streak artifacts in the lungs, the 
lung texture was clearer, the bone tissues were more 
accurate, and the results obtained were closer to the real 
4D-CT. Furthermore, the quantitative evaluation listed 
in Table 2 shows an improvement in SSIM and PSNR for 
our results, which was statistically significant (P < 0.01). 
Due to the problems of mode collapse and unstable loss, 
generative adversarial networks can generate unreal, 

Fig. 6 Differences in mean CT values for the regions of interests (bone, lung, and soft tissue) compared with 4D-CT

Table 5 CT difference of lung tumor for 5 tested patients

The table includes the mean errors and the mean absolute errors of CT value for 
the regions of lung tumor compared with 4D-CT

Index 4D‑CBCT 4D‑sCT(Cyc) 4D‑sCT(CLC)

ME − 152.43 ± 96.85 90.24 ± 69.81 77.81 ± 76.58

MAE 153.45 ± 95.2 90.44 ± 69.54 86.71 ± 66.11

Table 6 Average results of dose calculations for all patients

Average RPD, Volume, and dose for five patients, based on the reference 4D-CT, were calculated for 4D-CBCT, 4D-sCT (Cyc), and 4D-sCT (CLC)

Dataset Index Lung_L(V5Gy) Lung_R(V5Gy) Lung_L(V20Gy) Lung_R(V20Gy) PTV(D98%) PTV(D2%) P_spine(D2%)

4D-CBCT RPD(%) 9.34% 5.68% 1.08% 2.32% 1.46% 3.44% 3.66%

vol(%)/dose(cGy) 1.334 1.054 0.268 0.344 88.4 223.4 74.62

4D-sCT(Cyc) RPD(%) 3.58% 2.14% 0.26% 0.88% 0.76% 0.30% 0.54%

vol(%)/dose(cGy) 0.31 0.374 0.152 0.198 44.12 18.68 11.48

4D-sCT(CLC) RPD(%) 2.50% 1.84% 0.44% 0.86% 0.60% 0.50% 0.34%

vol(%)/dose(cGy) 0.252 0.318 0.104 0.184 36.18 31.24 6.22
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Table 7 Results of dose calculations for all patients

RPD for five patients, based on the reference 4D-CT, were calculated for 4D-CBCT, sCT (Cyc), and sCT (CLC)

RPD (%) Dataset Lung_L(V5Gy) 
(%)

Lung_R(V5Gy) 
(%)

Lung_L(V20Gy) 
(%)

Lung_R(V20Gy) 
(%)

PTV(D98%) 
(%)

PTV(D2%) (%) P_
spine(D2%) 
(%)

Patient01 4D-CBCT 1.0 11.5 1.4 0.0 2.9 3.5 3.9

4D-sCT(Cyc) 0.6 5.1 0.0 0.0 0.3 0.0 0.2

4D-sCT(CLC) 0.1 3.2 0.3 0.0 0.4 0.5 0.2

Patient02 4D-CBCT 22.2 5.4 0.0 0.7 0.7 5.2 6.6

4D-sCT(Cyc) 13.5 2.7 0.0 1.8 1.4 0.3 2.1

4D-sCT(CLC) 6.8 1.6 0.0 0.9 0.8 0.2 0.8

Patient03 4D-CBCT 0.3 0.4 0.7 0.4 0.1 0.8 1.0

4D-sCT(Cyc) 1.7 0.1 0.7 0.5 0.9 0.1 0.0

4D-sCT(CLC) 2.5 0.3 1.5 0.6 1.1 0.1 0.0

Patient04 4D-CBCT 18.0 2.0 0.0 4.2 1.9 4.2 0.5

4D-sCT(Cyc) 2.0 0.1 0.0 0.4 0.8 0.9 0.0

4D-sCT(CLC) 2.8 0.4 0.0 1.1 0.1 1.6 0.0

Patient05 4D-CBCT 5.2 9.1 3.3 6.3 1.7 3.5 6.3

4D-sCT(Cyc) 0.1 2.7 0.6 1.7 0.4 0.2 0.8

4D-sCT(CLC) 0.3 3.7 0.4 1.7 0.6 0.1 0.7

Fig. 7 Dose distribution and dose–volume histograms (DVHs) of Patient 2: a 4D-CT, 4D-CBCT, and 4D-sCT (CLC); and b 4D-CT, 4D-CBCT, 
and 4D-sCT (Cyc)
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blurred, and under-diverse images [35]. CycleGAN failed 
to correctly recover soft tissues within some parts of the 
chest wall (patients 2, 3, 4, and 5) and certain high CT 
value regions near the spine (patient 5). Conversely, our 
method reduced these distortion effects (red lines in 
Fig.  4). However, our method is slightly over-corrected 
(green lines in Fig.  4), such as the brightening of the 
pericardial region of patient 4 caused by streak artifact 
is synthesized to appear even brighter. And the over-
correction may be attributed to overlearning the training 
dataset and model’s complexity. In the future, the mat-
ter may be avoided by reducing the model’s complex-
ity by fine-tuning the model parameters of the training 
dataset [36]. Moreover, Table 4 shows that the accuracy 
of mutual information between the registered 4D-CBCT 
and 4D-CT is 0.735 ± 0.08, while the two types of 4D-sCT 
based on CycleGAN and CLCGAN are 1.303 ± 0.08 and 
1.323 ± 0.08, respectively. According to the results, the 
generated 4D-sCT recovers lung textures, bone, and soft 
tissue, leading to higher mutual information. Compared 
to CycleGAN, CLCGAN exhibits fewer residual artifacts 
and higher capability of detail recovery, thus possessing 
higher mutual information.

Given that 4D-CBCT can be used for ART and accu-
rate dose calculation is needed when applying 4D-CBCT 
for ART, restoring the CT values while improving the 
image quality was necessary [9, 24]. Therefore, the ME 
and MAE of the overall CT value were calculated, and 
CT and dose difference maps were produced for the gen-
erated images, as shown in Table  3 and Fig.  5. The ME 
and MAE of the CT values were significantly reduced, 
and the dose difference was significantly decreased. The 
quantitative evaluation results of CT values for the local 
ROI are shown in Fig. 6. CLCGAN significantly improved 
the restoration of the lungs, bones, and soft tissues, with 
the smallest differences compared with 4D-CT. The 
improvements were more significant in the lungs and 
bones, consistent with the previous results from generat-
ing 4D-sCT [23, 24, 34]. Additionally, Table 5 focuses on 
the CT value errors of the tumor region, and the results 
show that the use of CLCGAN minimizes both the ME 
and MAE of CT value in the region of lung tumor.

4D images used for dose calculations, guiding conven-
tional and SBRT adaptive radiation therapy have been 
showed to improve target repeatability while reducing 
target volume and radiation dose to normal tissues [9, 
11]. Sonke et al. experimented on sixty-five lung cancer 
patients who treated with SBRT without a body frame to 
54 Gy in three fractions. Even with considerable breath-
ing motion, the PTV margins can safely be kept small 
[37]. Similarly, Bellec et  al. demonstrated a reduction 
in PTV in thirty-two lung cancer patients who received 

a prescribed dose of 48–54  Gy in three to six fractions 
under the guidance of 4D-CBCT [38]. Additionally, 
Harsolia A et  al. conducted 3D-CBCT and 4D-CBCT-
guided ART to eight lung cancer patients who received 
a prescription dose of 63 Gy in thirty-five fractions, and 
4D-CBCT achieved the best results in decreasing PTV 
volume and normal tissue doses [9]. In our study, a pre-
scription dose of 60  Gy in thirty fractions was applied. 
The results of Table 6 and 7 were obtained by performing 
dose calculations on the test patients. The mean relative 
difference of the five patients showed a reduction in ther-
apeutic target area and all critical organs, with all relative 
difference close to 0. Compared with 4D-sCT based on 
CycleGAN, CLCGAN further optimized the dose cal-
culation for the V5Gy of left and right lung, V20Gy of 
right lung, D98% of therapeutic target area, and D2% of 
the spinal cord. However, it did not achieve better results 
for the V20Gy of left lung and D2% of therapeutic target 
area.

Although CLCGAN effectively corrected 4D-CBCT, it 
did not improve the recovery of structures such as blood 
vessels inside the heart, which can cause the low PSNR. 
Based on Table 4, the accuracy of registration is not par-
ticularly high, which may be of the reason for blood ves-
sels recovery as well as low PSNR [39]. When removing 
streak artifacts, we did not consider the small amount of 
subtle lung texture in the feature maps [25, 26]. Moreo-
ver, faster CBCT scanners may be used in clinical prac-
tice, resulting in a shorter respiratory cycle and a larger 
interval between projections, which can lead to lower 
image quality. We did not perform experiments under 
such conditions, and the robustness of our method still 
needs to be considered. This was a limitation of our 
approach. In the future, it may be beneficial to collect 
clinical data from multiple centers or simulate datasets 
with sparse projections from different angles to address 
these limitations.

Conclusion
We demonstrated the ability of CLCGAN to gener-
ate 4D-sCT from undersampled 4D-CBCT. Satisfac-
tory results were obtained by quality assessment, CT 
value evaluation and dose calculation, with reference to 
4D-CT images acquired on the same day. Therefore, the 
corrected 4D-CBCT based on CLCGAN can be used for 
dose calculation in lung cancer.
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