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Abstract 

Objective  To compare intensity reduction plans for liver cancer with or without a magnetic field and optimize field 
and subfield numbers in the intensity-modulated radiotherapy (IMRT) plans designed for liver masses in different 
regions.

Methods  This retrospective study included 62 patients who received radiotherapy for liver cancer at Shandong Can-
cer Hospital. Based on each patient’s original individualized intensity-modulated plan (plan1.5 T), a magnetic field-free 
plan (plan0 T) and static intensity-modulated plan with four different optimization schemes were redesigned for each 
patient. The differences in dosimetric parameters among plans were compared.

Results  In the absence of a magnetic field in the first quadrant, PTV Dmin increased (97.75 ± 17.55 vs. 100.96 ± 22.78)%, 
Dmax decreased (121.48 ± 29.68 vs. 119.06 ± 28.52)%, D98 increased (101.35 ± 7.42 vs. 109.35 ± 26.52)% and HI 
decreased (1.14 ± 0.14 vs. 1.05 ± 0.01). In the absence of a magnetic field in the second quadrant, PTV Dmin increased 
(84.33 ± 19.74 vs. 89.96 ± 21.23)%, Dmax decreased (105 ± 25.08 vs. 104.05 ± 24.86)%, and HI decreased (1.04 ± 0.25 
vs. 0.99 ± 0.24). In the absence of a magnetic field in the third quadrant, PTV Dmax decreased (110.21 ± 2.22 vs. 
102.31 ± 26)%, L-P V30 decreased (10.66 ± 9.19 vs. 5.81 ± 3.22)%, HI decreased (1.09 ± 0.02 vs. 0.98 ± 0.25), and PTV 
Dmin decreased (92.12 ± 4.92 vs. 89.1 ± 22.35)%. In the absence of a magnetic field in the fourth quadrant, PTV Dmin 
increased (89.78 ± 6.72 vs. 93.04 ± 4.86)%, HI decreased (1.09 ± 0.01 vs. 1.05 ± 0.01) and D98 increased (99.82 ± 0.82 
vs. 100.54 ± 0.84)%. These were all significant differences. In designing plans for tumors in each liver region, a total 
number of subfields in the first area of 60, total subfields in the second zone of 80, and total subfields in the third 
and fourth zones of 60 or 80 can achieve the dose effect without a magnetic field.

Conclusion  In patients with liver cancer, the effect of a magnetic field on the target dose is more significant 
than that on doses to organs at risk. By controlling the max total number of subfields in different quadrants, the effect 
of the magnetic field can be greatly reduced or even eliminated.
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Introduction
According to the latest global cancer statistics, the mor-
tality and incidence of liver cancer rank third and sixth 
in the world, respectively, and liver cancer has the second 
highest mortality rate among all cancers in China [1]. 
Because most patients with liver cancer have missed the 
opportunity for surgery and have a poor prognosis and 
short survival time, neoadjuvant radiotherapy (RT) plays 
an important role in the multidisciplinary treatment of 
advanced liver cancer.

Cone-beam computed tomography (CBCT) image-
guided radiotherapy (IGRT) has become one of the 
methods to determine the exact location of the tumors 
to be treated. Although CBCT is very effective in the 
development of RT, it does not provide the best soft tis-
sue contrast, especially for the treatment of tumors in the 
prostate, brain and abdomen [2, 3]. In recent years, in RT, 
there has been a trend to study and use magnetic reso-
nance imaging (MRI) as an imaging tool to better display 
soft tissue and depict tumors more accurately. In cancer 
radiotherapy, MR image guidance provides many ben-
efits [4], such as depicting target volume [5], helping with 
motion management [6], and adapting to anatomical 
changes [7], which are useful for the real-time, high-con-
trast visualization of tumors and organs at risk (OARs). 
Nonetheless, despite the benefits of magnetic resonance 
imaging guidance, it is also important to study the effect 
of magnetic fields on dose distribution.

In recent years, with the development and clinical 
application of magnetic resonance linear accelerators 
(MR-LINAC), people have become increasingly inter-
ested in the effect of magnetic fields on dose distribution, 
and some research results have appeared [8, 9]. The MR-
LINAC receives a static magnetic field perpendicular to 
the beam direction. In the MR-LINAC, the Lorentz force 
exerted by a static magnetic field makes the secondary 
electron move perpendicular to its velocity. Inside the 
body, the Lorentz force reduces the stacking depth and 
leads to asymmetry of the transverse beam profile [10]. 
At the tissue-air interface, the magnetic field returns 
electrons that leave the tissue to the surface, which is 
called the electron return effect (ERE) [11]. This effect 
is obvious at interfaces where there is a great difference 
in density and leads to a significant change in the dose 
at the interface. Because of this effect, hot spots and cold 
spots appear around the air cavity. The main concern 
is that in the presence of air in and near the target, the 
application of such a magnetic field in RT may affect the 
dose distribution due to the Lorentz force. According to 
several research, in patients treated on 1.5 T MR-LINAC, 
the air cavity in the rectum will alter the measurement of 
the rectal prescription dose due to ERE, and the size of 
the air cavity will determine the position and size of hot 

spots [12]. The effectiveness of MR-linac radiation in the 
case of anatomical alterations in head and neck cancer 
was assessed by Chuter et al. The findings demonstrated 
that neither the planning target volume (PTV) nor the 
OARs related to head and neck cancer were significantly 
affected by the magnetic field or the target dose [13]. Hei-
jst et al. studied the effect of a magnetic field on the skin 
dose in breast radiotherapy and found that the increase 
in skin dose caused by accelerated local breast irradiation 
was less than that caused by whole breast irradiation [14]. 
However, at present, the effect of magnetic fields on the 
radiation dose for liver cancer is still unclear.

Intensity-modulated radiotherapy (IMRT) is a com-
mon clinical method for the treatment of cancer [15]. 
Compared with traditional RT, IMRT is different in that 
it reverses the treatment planning process and uses many 
fields or subfields to provide a high-precision conformal 
dose distribution [16]. Moreover, the Multi-Leaf Col-
limator (MLC) is irregular and the beam control ability 
is stronger [17]. MLCs are used for IMRT to generate 
the optimal dose model for each treatment area based 
on the dose constraints set by the PTV and OARs. The 
liver belongs to the parenchymal organs, which are sur-
rounded by the heart, kidney, lung, stomach, small intes-
tine and other OARs [18]. Due to its unique anatomical 
structure, ERE affects liver tumors in various ways, and 
the magnetic field dose of liver tumors that are close to 
hollow organs is significantly altered. among which there 
are many hollow organs. Because of the liver has a spe-
cial anatomical structure, ERE has different effects on 
liver tumors in different liver regions. The purpose of this 
work was to study the effect of off-site ERE on the qual-
ity of treatment plan for liver cancer under 1.5  T verti-
cal magnetic field. The relationship between the quality 
of the plan and the number of subfields was observed to 
explore whether the new plan can compensate the dose 
disturbance caused by the static magnetic field.

Method
Patient selection
A retrospective study was conducted with 62 patients 
who received RT for liver cancer in Shandong Cancer 
Hospital from February 2022 to February 2023. This 
study was approved by the Ethics Review Committee 
of Shandong Cancer Hospital (SDTHEC2022012021), 
and informed consent was obtained from all patients 
and their families. To better describe the relationship 
between the plan and the location of the mass, the liver 
was divided into four quadrants (Fig.  1). According to 
the distribution of the portal vein and hepatic vein in the 
liver, anatomical segmentation and lobulation was car-
ried out, generally dividing the liver into 5 leaves and 8 
segments. The liver was divided into four quadrants: 1, 2, 
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4a as the I quadrant, 7, 8 as the II quadrant, 5, 6 as the III 
quadrant, and 3, 4b as the IV quadrant (Fig. 2).

MR‑LINAC workflow
Patients treated on the Elekta Unity MR-linac (Elekta 
Unity, Elekta AB, Stockholm, Sweden) received the Bril-
liance large-aperture CT (Royal Philips, Amsterdam, 
Netherlands) simulation with a tube voltage of 120  kV, 
a layer thickness of 1  mm, and a scan cycle of approxi-
mately 2  min. And using T2-weighted MRI (Siemens, 
Munich, Germany) scans (repetition time: 2100 ms, echo 
time: 205.585 ms, layer thickness: 1.2 mm) simulation on 
the same day. The supine position was fixed, the patient 
was in a state of free breathing, and the abdominal pres-
sure band (Hymnsum, Shandong, China) was employed 
to lessen the effect of breathing. MR-LINAC can only 
carry out static intensity modulation scheme. (Fig. 3).

Development and assessment of reference plans
Radiation oncologists with expertise in the treatment 
of liver cancer carried out the PTV and OARs draw-
ings. The PTV was obtained by enlarging the gross 
target volume (GTV) of liver cancer patients treated 
using both machines by 3 mm, and the radiation dose 
was 95% of the PTV, V10 < 33.9  Gy. Table  1 lists the 
OARs restriction. The study did not include the lungs 
and hearts since the chest was not completely scanned 
in some participants. The prescribed dose for 32.3% 
of patients was 63  Gy/9 fractions/qd; for the remain-
ing patients receiving conventional radiation, the pre-
scribed doses were 19.4% 45 Gy/15 fractions/qd, 25.8% 
40 Gy/8 fractions/qd, and 8.1% 50 Gy/25 fractions/qd. 
Based on the idea of equal distribution of the closest, 
the field is distributed. The dose rate of MR-LINAC is 
fixed at 400 MU/min.

The program evaluation was conducted by attending 
physicians and medical physicists using dose-volume 
histogram (DVH) indicators based on the same regi-
men. The uniformity and consistency of the dose in the 
target area were evaluated by the conformity index (CI) 
[19] and homogeneity index (HI) [20]. The dose distri-
bution to the PTV and OARs was evaluated by average 
dose (Dmean), minimum dose (Dmin), maximum dose 
(Dmax) and Vx (percentage of volume accepted xGy). 
This study is normalized and compared with the per-
centage of the target dose of DVH in the correspond-
ing prescription dose because the patients’ tumor sizes, 
shapes, and prescription doses varied.

HI and CI are defined as:

D2% and D98% represent the minimum dose covering 
2% and 98% of the target volume, respectively; VT,ref 
refers to the target volume where the accepted dose is 
equal to or greater than the reference dose, and Vref is 
the prescription equivalent dose volume.

Optimization plan
On the basis of each patient’s original customized inten-
sity modulation reference plan (plan1.5 T), only the mag-
netic field setting was disabled, and the static intensity 
modulation plan without a magnetic field (plan0  T) was 
generated in order to compare the impact of magnetic 
field on the quality of the plan. Dosimetric parameter dis-
crepancies between plans 1.5 T and 0 T were studied.

HI =
D98%

D2%

CI =
VT,ref

Vref

Fig. 1  Schematic diagram of the anatomical division of the liver

Fig. 2  Schematic representation of liver masses in four patient 
quadrants. A Mass in the I quadrant; B mass in the II quadrant; C mass 
in the III quadrant; and D mass in the IV quadrant
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Four optimization strategies are developed to observe 
the impact of maximum subfield number and field den-
sity on fading magnetic field. The maximum subfield 
number is designed as "30, 60, 80" three critical values, 
and 15°uniform distribution of fields, according to clin-
ical experience.

The first optimization scheme is designed to control 
only the static intensity modulation scheme (plan30), 
in which the maximum number of subfields is set to 
30, which represents the low subfield number plan; the 

second optimization scheme is designed to control only 
the static intensity modulation scheme (plan60), in which 
the maximum number of subfields is set to 60, which 
represents the median subfield number plan; the second 
optimization scheme is designed to control only the static 
intensity modulation scheme (plan80), in which the maxi-
mum number of subfields is set to 80, which represents 
the high subfield number plan; the fourth is the multi-
field static intensity modulation plan (planangle), which 
raises the field angle to about 15°, with the exception of 
the direction in which the lead dose limit and OARs can-
not be added. Table 2 displays the planning information 
for each plan. The dosimetric indices with a significant 
influence of the magnetic field are found by compar-
ing the dosimetric characteristics between plan1.5  T and 
plan0 T. Only these indexes are compared between plan0 T 
and optimization plan to determine which optimization 
strategy is comparable to or superior to the non-mag-
netic field plan.

Statistical analysis
IBM SPSS (Version 25.0) statistical software (IBM Cor-
poration, Armonk, NY, USA) was used for statistical 

Fig. 3  MRgRT workflow

Table 1  Planning objectives for organs at risk

Max maximum

Organs at risk Dose constrain

Duodenum V50 < 15%

Spinal cord Max dose ≤ 40 Gy

Stomach Max dose ≤ 40 Gy

Kidneys V20 < 30%

Lung D1500cc < 15 Gy

Heart Max dose ≤ 42.5 Gy

Liver Max dose < 45 Gy

Table 2  Planning information for the optimization plan

Plan1.5 T Plan0 T Plan30 Plan60 Plan80 Planangle

Magnetic field 1.5 T 0 T 1.5 T 1.5 T 1.5 T 1.5 T

Max number of subfields 50 50 30 60 80 50

Number of beams 8 (5–10) 8 (5–10) 8 (5–10) 8 (5–10) 8 (5–10) 14 (13–16)
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analysis. Prior to comparing the dose parameters, the 
data’s normality was assessed using the Shapiro–Wilk 
test. The dosimetry parameters were compared by 
paired t test and Wilcoxon signed rank sum test.

Results
Patient and treatment characteristics
The median age of patients getting SBRT was 58.0 years, 
72.3% of them were men, and 50% had primary liver can-
cer (Table 3). After the normal distribution test, the data 
is proved to be non-normal distribution, so the Wilcoxon 
signed rank method is used.

Magnetic field influence
The RT plans of all patients in this study met the accept-
ance criteria. In Figs.  4, 5, 6 and 7, the distribution of 
doses to different organs among the plans are repre-
sented by column charts. The horizontal axis of the chart 
shows the DVH indicators and evaluation parameters. In 

Table 3  Patient characteristics

Quadrant I Quadrant II Quadrant III Quadrant IV

Number 
of patients

13 20 17 12

PTV (cm3) 49.62 ± 64.28 51.58 ± 64.72 50.61 ± 65.13 51.88 ± 67.13

Fig. 4  Comparison of dose parameters between plans with or without a magnetic field for the first quadrant. A Parameters of PTV, B parameters 
of OARs. STO stomach, SC spinal cord, L liver, L-P normal liver, LK left kidney, RK right kidney, Du duodenum

Fig. 5  Comparison of dose parameters between plans with or without a magnetic field for the second quadrant. A Parameters of PTV, B parameters 
of OARs. STO stomach, SC spinal cord, L liver, L-P normal liver, LK left kidney, RK right kidney, Du duodenum
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the cases where DVHs is CI and HI, the vertical axis dis-
plays absolute values. In the cases where DVHs is Dx, the 
vertical axis displays the percentage of the prescription 
dose, and in the case of Vx, it displays the volume per-
centage that accepts the xGy value. Additionally, majority 
of the characteristics between groups showed variations. 
Asterisks were used to indicate the DVH parameters that 
differed significantly (P < 0.05). The Wilcoxon symbolic 
rank sum test is employed, and the parameters all fit the 
non-normal distribution.

The dose-volume difference between the treatment 
plans designed for 1.5  T and 0  T for the first quad-
rant is shown in Fig. 4. In the indicators involving PTV 

coverage and HI, there were statistically significant dif-
ferences. For PTV, in the absence of a magnetic field, 
the indexes of most recalculated optimized plans were 
significantly improved, including an increase in PTV 
Dmin (97.75 ± 17.55 vs. 100.96 ± 22.78)%, a decrease in 
Dmax (121.48 ± 29.68 vs. 119.06 ± 28.52)%, and a decrease 
in HI (1.14 ± 0.14 vs. 1.05 ± 0.01). Some indexes also 
deteriorated significantly, including the increase in 
D98 (101.35 ± 7.42 vs. 109.35 ± 26.52)%. In the absence 
of a magnetic field, most of the indicators for OARs 
increased, but there were no significant differences.

The difference in dose-volume measurements between 
the treatment plans designed for 1.5  T and 0  T for the 

Fig. 6  Comparison of dose parameters between plans with or without a magnetic field for the third quadrant. A Parameters of PTV, B parameters 
of OARs. STO stomach, SC spinal cord, L liver, L-P normal liver, LK left kidney, RK right kidney, Du duodenum

Fig. 7  Comparison of dose parameters between plans with or without a magnetic field for the fourth quadrant. A Parameters of PTV, B parameters 
of OARs. STO stomach, SC spinal cord, L liver, L-P normal liver, LK left kidney, RK right kidney, Du duodenum
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second quadrant is shown in Fig.  5. In the indicators 
involving PTV coverage and HI, there were statistically 
significant differences. For PTV, in the absence of a mag-
netic field, the indexes of all recalculated optimized plans 
were significantly improved, including an increase in 
PTV Dmin (84.33 ± 19.74 vs. 89.96 ± 21.23)%, a decrease in 
Dmax (105 ± 25.08 vs. 104.05 ± 24.86)%, and a decrease in 
HI (1.04 ± 0.25 vs. 0.99 ± 0.24). In the absence of a mag-
netic field, most of the indicators for OARs were reduced, 
but there were no significant differences.

The dose-volume difference between the treatment 
plans designed for 1.5 T and 0 T for the third quadrant 
is shown in Fig. 6. In the indicators involving PTV cov-
erage and HI, there were statistically significant differ-
ences. For PTV, in the absence of a magnetic field, the 
indexes of most of the recalculated optimized plans were 
significantly improved, including decreases in PTV Dmax 
(110.21 ± 2.22 vs. 102.31 ± 26)%, L-P V30 (10.66 ± 9.19 vs. 
102.31 ± 3.22)% and HI (1.09 ± 0.02 vs. 0.98 ± 0.25). Some 
indexes also deteriorated significantly, including the 
decrease in PTV Dmin (92.12 ± 4.92 vs. 89.1 ± 22.35)%. In 
the absence of a magnetic field, most of the indicators 
for OARs were reduced, but there were no significant 
differences.

The dose-volume difference between the treatment 
plans designed for 1.5  T and 0  T for the fourth quad-
rant is shown in Fig. 7. In the indicators involving PTV 
coverage and HI, there were statistically significant dif-
ferences. For PTV, in the absence of a magnetic field, 
the indexes of most recalculated optimized plans were 
significantly improved, including an increase in PTV 
Dmin (89.78 ± 6.72 vs. 93.04 ± 4.86)% and a decrease 
in HI (1.09 ± 0.01 vs. 1.05 ± 0.01). Some indexes also 

deteriorated significantly, including the increase in D98 
(99.82 ± 0.82 vs. 100.54 ± 0.84)%. In the absence of a mag-
netic field, most of the indicators for OARs were reduced, 
but there were no significant differences.

Optimization strategy
Among the dose parameters of plans with and with-
out a magnetic field, there was a significant dose differ-
ence between the optimized treatment scheme designed 
for 1.5  T and the magnetic field-free plan, as shown in 
Table  2. In the first quadrant, plan60 and plan80 could 
achieve the same HI as plan0T, plan30 could achieve the 
same Dmin, and plan60 could achieve the same Dmax. In the 
second quadrant, plan80 could achieve the same HI and 
plan80 and planangle could achieve the same Dmax with no 
magnetic field effect, and plan80 could achieve better Dmin 
outcomes. In the third quadrant, plan60 and plan80 could 
achieve the same HI, plan60, plan80 and planangle could 
achieve the same Dmax, and the optimization strategy in 
L-P V30 all could achieve the effect of no magnetic field. 
In the fourth quadrant, plan60 and plan80 could achieve 
the effect of no magnetic field in terms of HI and Dmin 
(Table  4). The radiation time and monitoring units of 
each optimized treatment regimen are shown in Table 5.

Table 4  Comparison of the dose differences between the optimized strategy and nonmagnetic field plan

Plan0 T Plan30 Plan60 Plan80 Planangle

I quadrant

 HI 1.05 ± 0.01 1.08 ± 0.01 (0.027) 1.05 ± 0.01 (0.366) 1.05 ± 0.01 (0.527) 1.07 ± 0.03 (0.007)

 Dmin(%) 100.96 ± 22.78 99.54 ± 35.2 (0.116) 98.34 ± 23.41 (0.006) 98.08 ± 22.4 (0.006) 97.82 ± 24.05 (0.013)

 Dmax (%) 119.06 ± 28.52 128.8 ± 40.96 (0.028) 120.11 ± 30.19 (0.087) 120.01 ± 29.65 (0.019) 121.04 ± 29.23 (0.019)

II quadrant

 HI 0.99 ± 0.24 1.08 ± 0.03 (0.002) 1.06 ± 0.02 (0.005) 1.05 ± 0.02 (0.142) 1.07 ± 0.02 (0.001)

 Dmin (%) 89.96 ± 21.23 86.6 ± 6.28 (0.002) 89.25 ± 5.29 (< 0.001) 90.01 ± 5.24 (0.001) 89.19 ± 5.61 (< 0.001)

 Dmax (%) 104.05 ± 24.86 111.35 ± 2.25 (0.002) 110.32 ± 1.79 (0.043) 110.1 ± 1.55 (0.184) 110.38 ± 1.36 (0.091)

III quadrant

 HI 0.98 ± 0.25 1.07 ± 0.02 (0.041) 1.05 ± 0.01 (0.837) 1.05 ± 0.01 (0.313) 1.09 ± 0.13 (0.006)

 Dmax (%) 102.31 ± 26 110.66 ± 1.92 (0.028) 109.48 ± 1.89 (0.002) 109.65 ± 1.99 (0.002) 109.82 ± 1.88 (0.031)

 L-P V30 (%) 5.81 ± 3.22 10.77 ± 8.24 (0.080) 10.65 ± 9.6 (0.110) 7.82 ± 4.18 (0.753) 9.54 ± 6.98 (0.499)

IV quadrant

 HI 1.05 ± 0.01 1.08 ± 0.01 (0.007) 1.06 ± 0.01 (0.132) 1.06 ± 0.01 (0.180) 1.06 ± 0.01 (0.002)

 Dmin (%) 93.04 ± 4.86 85.34 ± 10.26 (0.008) 90.17 ± 6.65 (0.060) 92.09 ± 3.78 (0.091) 90.31 ± 5.62 (0.015)

Table 5  Parameter information related to optimization plan

Total MU Total time (min)

Plan30 74,265.77 283.5

Plan60 79,828.038 338.2

Plan80 81,118.94 388.3

Planangle 72,467.46 330.2
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Discussion
By comparing the simulated dose distributions of plans 
without a magnetic field and those with a 1.5 T magnetic 
field, the effect of the magnetic field was evaluated. The 
results of this study show that the existence of a magnetic 
field leads to a systematic difference in dose exposure 
between the target and OARs. Theoretically, the dose 
transfer guided by MR is inevitably affected by the per-
manent magnetic field [21]. The magnetic field-induced 
change is caused by the change in dose deposition in the 
tissue, which affects the trajectory of secondary electrons 
that return to the tissue surface at the air-tissue interface 
[22], that is, the so-called ERE, causing the beam dose 
deposition nucleus to become obviously asymmetric in 
the direction perpendicular to the 1.5  T magnetic field 
[10]. Compared with the nonmagnetic field plan, the 
original plan with a magnetic field for each quadrant, the 
dose uniformity and the minimum and maximum doses 
to the target area were worse, and the dose received by 
the OARs was increased. It will worsen the target dose’s 
inhomogeneity and increase or decrease the interfacial 
dose under the concurrent influence of tissue inhomo-
geneity and ERE [23]. This conclusion is similar to that 
reported by Nedaie HA et al. [24]. The results also show 
that in the treatment plans for liver cancer, the effect of 
a magnetic field on OARs is more stable than that on 
the target area. It might be because the target area will 
be impacted by the magnetic field’s superposition and 
receive more beams than the OARs. However, in the first 
quadrant, in the absence of a magnetic field, the dose to 
the OARs is relatively increased, which may be because 
compared with other regions, the first quadrant’s tumors 
adjacent to more OARs and represents a more complex 
scattering environment. The heart, lungs, esophagus, and 
other significant hollow organs are examples. The gas in 
the treatment ray path may make dosage distortion worse 
with ERE [25], and the small sample size may lead to 
inconsistent results.

In the second part of the study, it was found that when 
designing plan for liver tumors in the first quadrant, the 
total number of control subfields should be 60; the total 
number of liver tumor planning control subfields in the 
second quadrant should be 80; the total number of liver 
tumor planning control subfields in the third quadrant 
and the fourth quadrant should be 60 or 80, the dos-
age effect of the magnetic field on the patients can be 
greatly reduced or even completely eliminated via 
plan adjustment. Normally, the magnetic field would 
impact on the fluence of the photon [26]. This fluence 
would depend on the prescription dose and number of 
subfields. The MLC field strength contains numerous 
subfield control points, which define the MLC shape 
[27]. The greater the number of control points is, the 

higher the beam intensity level [28]. Although the tar-
get dose is high, there are more hot areas, thus it has 
two sides. The findings of this study indicate that the 
maximum sub-field number should be customized for 
various liver tumor subtypes since it cannot be gener-
alized. The blade of the MLC experiences continuous 
movement in RT, and the field intensity is adjusted to 
emit the beam to change the quality of the plan [29]. 
The results of this study show that increasing the beam 
dose has minimal effect on counteracting the magnetic 
field and even led to an increase in the dose to OARs 
due to the encryption of the field, which may be due to 
its limited field size and complex irradiation trajectory 
and low the irradiation efficiency [10]. However, the use 
of the relative beam itself counteracts the uneven dose 
caused by ERE and limits the freedom of IMRT plan-
ning. Raaijmakers et al. proposed that when irradiating 
an inhomogeneous anatomical target in the presence of 
a magnetic field, a relative beam is not necessary [30]. 
Overencrypting the field will degrade the quality of the 
plan.

In this study, it was recognized that controlling the 
total number of different subfields in different quad-
rants could result in better RT plans, which can largely 
offset the dose changes caused by magnetic fields. 
In addition, with extensions in treatment time and 
increases in hop count, Anatomical environment move-
ment may somewhat increase, and the subfield number 
should be set to a feasible choice to ensure adequate 
dose distribution while keeping the treatment time as 
short as possible. According to the findings, plan80’s 
radiation schedule was 50 min longer than plan60’s, and 
each patient received an insignificant one-minute-long 
treatment on average. Normal tissue and target volume 
optimization constraints follow individual/institutional 
preferences, which may lead to different results from 
this study. Nevertheless, the optimization plan cur-
rently used reflects the goal of achieving optimal target 
coverage and dose uniformity based on the agency’s 
experience.

This study has several limitations. First, the sample 
size is relatively small, and in future studies, our goal is 
to include more liver SBRT cases to further verify the 
model. The results would be more persuasive if validated 
with prospective data in a clinical context. Second, pre-
vious RT records were not accounted for in this study. 
The changes in liver properties caused by previous liver 
treatment may affect the dose distribution. Third, com-
pared with the traditional linear accelerator, the dose 
rate of MR-LINAC is lower, resulting in longer treatment 
time. However, the similarities and differences between 
the two are not clear in the existing research, and further 
exploration is needed in the follow-up research.
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Conclusion
In summary, the effect of a 1.5  T transverse magnetic 
field on the target dose was more significant than that on 
the dose to OARs in patients with liver cancer. By opti-
mizing the max total number of subfields of liver masses 
in different quadrants, the influence of the magnetic field 
can be greatly reduced or even eliminated, thus avoiding 
deterioration of the overall plan quality.
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