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Abstract
Purpose Manual clinical target volume (CTV) and gross tumor volume (GTV) delineation for rectal cancer 
neoadjuvant radiotherapy is pivotal but labor-intensive. This study aims to propose a deep learning (DL)-based 
workflow towards fully automated clinical target volume (CTV) and gross tumor volume (GTV) delineation for rectal 
cancer neoadjuvant radiotherapy.

Materials & methods We retrospectively included 141 patients with Stage II-III mid-low rectal cancer and randomly 
grouped them into training (n = 121) and testing (n = 20) cohorts. We adopted a divide-and-conquer strategy to 
address CTV and GTV segmentation using two separate DL models with DpuUnet as backend-one model for CTV 
segmentation in the CT domain, and the other for GTV in the MRI domain. The workflow was validated using a 
three-level multicenter-involved blind and randomized evaluation scheme. Dice similarity coefficient (DSC) and 95th 
percentile Hausdorff distance (95HD) metrics were calculated in Level 1, four-grade expert scoring was performed in 
Level 2, and head-to-head Turing test in Level 3.

Results For the DL-based CTV contours over the testing cohort, the DSC and 95HD (mean ± SD) were 0.85 ± 0.06 and 
7.75 ± 6.42 mm respectively, and 96.4% cases achieved clinical viable scores (≥ 2). The positive rate in the Turing test 
was 52.3%. For GTV, the DSC and 95HD were 0.87 ± 0.07 and 4.07 ± 1.67 mm respectively, and 100% of the DL-based 
contours achieved clinical viable scores (≥ 2). The positive rate in the Turing test was 52.0%.
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Introduction
Colorectal cancer is one of the top malignancies in terms 
of incidence and mortality not only in China [1] but also 
worldwide [2]. The proportion of rectal cancer in colorec-
tal cancer is nearly 2/3, among which mid-low rectal can-
cer accounts for approximately 70% [3]. Unfortunately, 
most patients have already progressed into the advanced 
stages at the time of their initial diagnosis. A neoadjuvant 
chemoradiation regimen followed by surgery is the cur-
rent standard of care for locally advanced mid-low rectal 
cancers [4–6].

Gross tumor volume (GTV) and clinical target vol-
ume (CTV) delineation by oncologists are critical steps 
in radiotherapy (RT) treatment planning. Accurate target 
delineation is vitally important in ensuring the delivery 
of a safe and effective radiation dose to the tumor while 
minimizing damage to surrounding healthy tissues. 
According to guidelines of rectal cancer RT [7–10], the 
GTV includes the visible and palpable tumor in the rec-
tum as well as any metastatic lymph nodes, and the CTV 
includes the above GTV region plus any areas at risk for 
microscopic disease spread, such as the internal iliac, 
presacral, and perirectal nodal regions. Since the tissue 
contrast between computed tomography (CT) and mag-
netic resonance imaging (MRI) are substantially different, 
patients with locally advanced rectal cancer are routinely 
prescribed to take both CT and MRI simulations to facili-
tate accurate target delineation. Specifically, CT images 
are primarily used for CTV delineation, while GTV 
delineation is heavily reliant on MRI images for clear 
visualization of the primary site. Although dual imaging 
modalities are employed, the process of GTV and CTV 
delineation remains labor-intensive, with the slice-by-
slice procedure often taking more than an hour for radia-
tion oncologists to complete.

To achieve accurate and efficient target delineation for 
radiotherapy, growing efforts have been directed to auto-
mated segmentation methods, particularly with deep 
learning (DL) as backend. However, the work pertinent 
to rectal cancer target segmentation is rare. Men et al. 
[11, 12] designed a deep dilated CNN (DDCNN)-based 
model for CTV segmentation, which outperformed the 
classic Unet with 3.8% increase in Dice similarity coeffi-
cient (DSC). Larsson et al. [13] developed a three-dimen-
sional Vnet model, exhibiting improved DSC values over 
both Unet and DDCNN. Also, Wu et al. [14] derived a 
network model from the classic Unet by adding more 
skip connections, the performance of which was vali-
dated by expert evaluation. Besides, Song et al. [15] used 

the DeepLabv3 + network for postoperative rectal cancer 
CTV segmentation. As for GTV, to date only Wang et al. 
[16] proposed to use Unet for GTV auto-segmentation 
for rectal cancer neoadjuvant radiotherapy. In addi-
tion, there are some attempts to auto-segment GTV for 
esophageal cancer [17, 18].

Moreover, to the best of our knowledge, we did not find 
any relevant work towards automated segmentation of 
rectal cancer CTV and GTV for neoadjuvant radiother-
apy in the same process. This can be partly attributed to 
the aforementioned clinical routine practice that CTV 
and GTV are delineated using information from differ-
ent imaging modalities. Despite this, the routine practice 
indicates the feasibility to fully automate the target delin-
eation procedure by means of divide-and-conquer.

To this end, this is the first study that has developed a 
DL-based workflow towards fully automated CTV and 
GTV delineation for rectal cancer neoadjuvant radiother-
apy. The workflow was based on the human reasoning 
process and the target segmentation task was performed 
in a divide-and-conquer strategy, i.e., CTV in CT domain 
and GTV in MRI domain respectively. To validate the 
workflow in more aspects than comparison with ground 
truth, we employed a multicenter-involved blind and ran-
domized evaluation scheme.

Materials & methods
Data collection and preparation
As a plot study approved by the institutional review 
board a cohort of 141 patients treated at our institute 
(Peking University Cancer Hospital) between March 
2020 and May 2022 were retrospectively included in this 
study. The patients were diagnosed with Stage II to III 
rectal cancer, and received neoadjuvant chemoradiother-
apy, which is the standard treatment for locally advanced 
rectal cancer. The cohort were categorized into training 
group (121/141) and testing group (20/141) by random 
sampling (Fisher-yates shuffle). Over the training group, 
69 were female and 52 were male, and the ages ranged 
from 33 to 74 with the median value of 61. Over the test-
ing group, 13 were female and 7 were male, and the ages 
ranged from 39 to 72 with the median value of 63.

All the patients were immobilized by pelvis thermo-
plastic in the supine posture and received CT and MRI 
simulations respectively. The CT images were acquired 
on a big-bore RT-specific CT scanner (Somation Sen-
sation Open, Siemens Healthineers, Germany) with 
5-mm slice thickness, and MRI T2 and T1 images on a 
3.0-T MR-Sim scanner (MAGNETOM Skyra, Siemens 

Conclusion The proposed DL-based workflow exhibited promising accuracy and excellent clinical viability towards 
automated CTV and GTV delineation for rectal cancer neoadjuvant radiotherapy.
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Healthineers, Germany) with 5-mm slice thickness as 
well. The CT and MRI images were imported into the 
Eclipse Treatment Planning System (Varian Medical Sys-
tem Inc., USA) for target and organs-at-risk (OAR) delin-
eation. Due to the different imaging contrast properties 
between CT and MRI, CTV structures were contoured in 
CT images, and GTV structures in MRI T2 images. Note 
that the CTV and GTV definitions in this study were 
consistent with the NCCN and ESMO guideline. The 
CTV and GTV contours of all the patients were reviewed 
by two senior physicians, and therefore were used as 
ground truth (GT) herein.

DL model for CTV and GTV segmentation
The kernel DL network herein were DpnUnet, a highly 
capable network that demonstrates impressive perfor-
mance in segmentation tasks with fuzzy boundaries, 
and validated in cervical cancer for CTV and OAR seg-
mentation [19]. It is important to note, since CTV and 
GTV structures were contoured in two disparate image 
domains, CT and MRI, we proposed to use a divide-and-
conquer strategy: two DL models were built respectively 
to take in CT images for CTV segmentation and MRI 
images for GTV segmentation respectively and spe-
cifically. Despite the identical network architecture, the 
input, network parameters (weights) and output were 
completely different.

DpnUnet architecture
The DpnUnet was a Unet variant characterized by the 
typical U-shape encoder-decoder design and locally 
integrated with dual-path-network (DPN) modules. The 
overall architecture of the DpnUnet network was illus-
trated in Fig.  1. Briefly, the original U-net encoder part 
was replaced with the DPN92 model, and the decoder 
part embedded the micro-blocks in the DPN92 net-
work to achieve paralleled performance in abstract fea-
ture recovery. The input layer took in 3 adjacent slices 
(empirical value) to incorporate 3D anatomy context, and 
the network delivered the predicted regions-of-interest 
(ROIs) in the middle slice. Generally, the DpnUnet net-
work was an end-to-end segmentation framework that 
could achieve pixel-wise labeling in both CT and MRI 
images. Once the two models were trained, regions of 
CTV and GTV were auto-segmented slice by slice.

Model training
The training processes of CTV and GTV DpnUnet net-
works were the same but independently with different 
training data. There were 121 patient cases in the train-
ing group. The DpnUnet networks were trained with 
11-fold (10:1) cross-validation, 110 cases for training and 
the other 11 cases for validation. Generic data augmen-
tation techniques including flip, and translation, rotation 
were used. The networks were implemented by PyTorch 
1.12.0 and Python 3.6, and trained on a NVIDIA P100 
GPU (16 GB memory). Both of the CTV and GTV ker-
nel networks were initialized with a pre-trained network 

Fig. 1 Schematic of the kernel DpnUnet network architecture
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that had been trained for OAR segmentation in cervical 
cancer CT images [20]. The optimizer was Adam. The 
learning rate was initialized as 0.0001 and decayed by an 
exponential function with gamma 0.9 for every epoch. 
The total epoch number was 100 with the batch size 
as 4, and the model with the lowest validation loss was 
selected as the output for further testing. The optimizer, 
learning rate and batch size were also the same for both 
CTV and GTV model training.

Performance evaluation
There were 20 patient cases in the testing group. We 
adopted the three-level evaluation design proposed by 
[14] to assess both the CTV and GTV DL model per-
formance in more aspects than one. The evaluation pro-
cedure was depicted in Fig.  2. The Level-1 evaluation 
focused on objective metrics, and the Level-2 and Level-3 
focused on oncologists’ subjective assessment of clini-
cal viability. Moreover, to enhance the generalizability of 
subjective evaluation of the proposed method, we invited 
8 senior radiation oncologists from 8 different cancer 
centers to score contours blindly and independently.

Level 1: quantitative metrics based objective evaluation
The Dice similarity coefficient (DSC) and 95th percentile 
Hausdorff distance (95HD) [21] were used in Level-1 to 
quantify the contouring accuracy. The DSC index defined 
in Eq. (1) was to measure the relative volumetric overlap 
between two contours and the value equals 1 when two 
contours are completely the same.

 
DSC(P,G)=

2 |P ∩ G|
|P| + |G|  (1)

Where P and G represented the predicted and ground 
contours respectively, and |P∩G| represented the volume 
that P and G intersected.

The 95HD index defined in Eqs. (2–3) was to reflect the 
overlapping between two contours by mismatching dis-
tance, and higher distance value indicates larger contour 
difference.

 95HD(P,G)=percentile(h(P,G) ∪ h(G,P), 95th) (2)

 h(P,G) = max(min||p − g||),p?P, g?G (3)

Where ||.|| is the Euclidean norm of the points of p and g.

Fig. 2 3-Level evaluation design for DL-based CTV and GTV auto-segmentation
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The DSC and 95HD values were calculated in each test-
ing case, as well as the mean and standard deviation (SD) 
over the entire testing group.

Level 2: blind & randomization expert scoring
Ten out of the 20 testing patients were randomly selected 
by Fisher-Yates shuffle for Level-2 evaluation. For CTV 
evaluation, five patients were randomly selected, and for 
each patient five CT slices were selected to display GT 
contours (CTV-GT: 5 × 5 = 25), and it went likewise with 
the rest 5 patients to generate CT slices with DL con-
tours (CTV-DL: 5 × 5 = 25 slices in one folder). Similarly, 
five MRI slices for five randomly selected patients were 
randomly extracted to display GT GTV contours (GTV-
GT: 5 × 5 = 25) and five MRI slices for the rest 5 patients 
to display DL GTV contours (GTV-DL: 5 × 5 = 25 slices 
in another folder). The DICOM-RT slices were exported 
as non-compressed TIFF images. In total, two folders of 
50 images for CTV (GT = 25, DL = 25) and GTV (GT = 25, 
DL = 25) evaluation were prepared. The images in each 
folder were reshuffled (in Python) and anonymized by 
ordering numbers each time before we sent them to an 
external expert for independent scoring.

The rubric for scoring was in grade (Table  1): 3 for 
Accept, 2 for Minor Revision, 1 for Major Revision and 

0 for Reject. The scores ≥ 2 were defined to be viable for 
clinical application. In addition, the scores in the GT and 
DL groups were statistically compared by Mann-Whitney 
U-test (significant level: p < 0.05).

Level 3: blind & randomization based head-to-head turing 
test
The rest ten testing patients were used for Level-3 evalu-
ation. For each testing patient, five CT slices were ran-
domly selected to display both CTV-GT and CTV-DL 
contours simultaneously (CTV = 10 × 5), and likewise five 
MRI slices to display both GTV-GT and GTV-DL con-
tours (GTV = 10 × 5). In total, two folders of 50 slices for 
CTV and GTV evaluation were prepared. The DL and 
GT contour colors (red/green) in each image was ran-
domized (Fisher-yates shuffle), and the images in each 
folder were reshuffled by random.shuffle() in Python and 
anonymized by ordering numbers, each time before the 
dataset was distributed along with the Level-2 dataset.

For each testing image, external experts were required 
to choose the optimal contour (positive) for clinical 
application. The positive rates of CTV-DL and GTV-DL 
contours were calculated, and the threshold for passing 
the Turing test was 30%, an empirical value [22].

Results
Level 1: DSC and 95HD
Figure  3 shows the DSC and 95HD value distribution 
over the testing patient cohort, and Fig.  4 shows the 
CTV and GTV contours of a representative patient case 
(Patient D). For DL-based CTV segmentation (green 
squares in Fig.  3&), the DSC values range from 0.69 to 
0.97 with mean ± SD as 0.85 ± 0.06, and the 95HD values 
range from 1.37 to 32.71 with mean ± SD as 7.75 ± 6.42. 
Two outlier data points in Fig.  3(b) are easily identi-
fied, i.e., Patient K with 95HD = 32.71  mm, and Patient 

Table 1 Rubric for expert scoring
Score Grade Criteria
3 Accept The segmentation is acceptable for 

clinical treatment.
2 Minor Revision A few minor edits of the segmenta-

tion are recommended, while the 
clinical impact may be not significant.

1 Major Revision A few major edits of the segmenta-
tion are mandatory.

0 Reject The segmentation is rejected and a 
redrawing is required.

Fig. 3 DSC and 95HD distribution over the testing cohort (20 patients)
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B with 95HD = 15.50  mm. Representative axial images 
of Patient K are shown in Fig.  5(a)&(c)&(e), where the 
CTV-GT contour indicates this is a special case. The 
medical record shows that this patient was with perirec-
tal lymph node invasion (LNI), and therefore mesorectal, 
sacral, internal iliac regions should be covered. This spe-
cial treatment inevitable induced relatively large distance 
errors. This goes similarly with Patient B that required 
additional coverage of lymph nodes. When these two 
outliers are removed, the 95HD values range from 1.37 to 
8.1 (5.93 ± 1.55).

For DL-based GTV segmentation (blue squares in 
Fig.  3), the DSC values range from 0.64 to 0.94 with 
mean ± SD as 0.87 ± 0.07, and the 95HD values range from 
2.38 to 8.70 with mean ± SD as 4.07 ± 1.67. An outlier data 
point in Fig.  3(a) is easily identified, i.e., Patient S with 
DSC = 0.64. Representative GTV contours of Patient S 

are shown in Fig. 5(b)&(d)&(f ). The GT and DL contours 
are highly similar in the middle axial planes, whereas DL 
contours exhibit over-coverage of surrounding tissue in 
the superior-inferior direction, which we did not figured 
out why yet and will be investigated in future.

Level 2: expert scoring
Figure  6 shows the distribution of expert scores on the 
blind and randomized CTV and GTV contours. Over 
the testing CTV contours, the cases accepted with no 
revision (Score = 3) account for 44.3% in GT and 51.9% 
in DL, and those requiring minor revision (Score = 2) 
account for 52.1% in GT and 43.8% in DL. The cases 
deemed as clinically viable (Score ≥ 2) are 96.4% in GT 
and 95.7% in DL. Besides, the cases requiring major revi-
sion (Score = 1) account for 3.6% in GT and 4.3% in DL, 
and none of GT and DL contours was rejected (Score = 0). 

Fig. 4 Representative axial illustration of Patient D: (a)&(c)&(e) CTV contours, where DSC = 0.88 and 95HD = 5.25 mm; (b)&(d)&(f) GTV contours, where 
DSC = 0.90 and 95HD = 5.22 mm. (GT-red line vs. DL-green line)
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The p-value between GT and DL scores is 0.180, indicat-
ing no significant difference.

Over the testing GTV contours, the cases accepted 
with no revision account for 80.7% in GT and 69.7% in 
DL, and those requiring minor revision account for 19.3% 
in GT and 29.8% in DL. In other words, 100% GT con-
tours and 99.5% DL contours are deemed as clinically via-
ble (Score ≥ 2). Besides, only one GTV-DL case requires 
major revision. The p-value between GT and DL scores is 
0.012, indicating statistically significant difference.

Level 3: head-to-head turing test
Figure  7 shows the result of the head-to-head Turing 
test, which is to reflect subjective preference between 
GT and DL contours. The proposed DL model passed 
the head-to-head Turing test (≥ 30%) for both CTV and 
GTV segmentation. Moreover, it is worth noting that DL 
contours prevail over GT contours in both CTV (DL vs. 

GT = 52.0% vs. 48.0%) and GTV (DL vs. GT = 52.3% vs. 
47.8%) segmentation.

Discussion
Accurate target delineation is crucial for ensuring optimal 
radiotherapy outcomes in patients with locally advanced 
mid-low rectal cancer. In this study, we developed a DL-
based workflow for fully automated CTV and GTV delin-
eation for rectal cancer neoadjuvant radiotherapy. The 
workflow used a divide-and-conquer strategy to address 
CTV segmentation in the CT domain and GTV segmen-
tation in the MRI domain. We used a DpnUnet network 
as the backend for the DL models. The key advantage and 
significance for clinical work is, while there are a lot of 
DL-based studies focusing on OAR segmentation, our 
work focused on CTV and GTV segmentation for rectal 
cancer. This approach allowed oncologists to efficiently 
delineate both CTV and GTV volumes, representing 

Fig. 5 Representative illustration of outlier patient cases: (a)&(c)&(e) CTV contours of Patient K, where DSC = 0.84 and 95HD = 32.71 mm; (b)&(d)&(f) GTV 
contours of Patient S, where DSC = 0.64 and 95HD = 3.82 mm. (GT-red line vs. DL-green line)
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a step forward towards DL-based fully automated tar-
get delineation. To validate the workflow, we designed a 
comprehensive three-level evaluation scheme that was 
multicenter-involved, blind, and randomized.

In Level-1, DSC and 95HD values over the test-
ing cohort were calculated. For CTV segmentation, 
the DSC and 95HD values (mean ± standard deviation) 
were 0.85 ± 0.06 and 7.75 ± 6.42  mm. Compared with 
the previous studies by Wu et al. [14] (DSC = 0.90 ± 0.02, 
95HD = 8.11 ± 1.93  mm) and by Men et al. [12] 
(DSC = 0.87), the performance of the proposed DL-based 
method seems inferior. Notably, there were seven cases 
with LNI in the training cohort, and two cases with LNI 
in the testing cohort. We assume that the cases with LNI 
were too limited for the model to gain pertinent capabil-
ity, which can also explain the large distance errors in 
patient B&K. For GTV segmentation, the DSC and 95HD 
values were 0.87 ± 0.07 and 4.07 ± 1.67  mm. Compared 

with the study by Wang et al. [16] (DSC = 0.74 ± 0.14, 
HD = 20.44 ± 13.35  mm), the performance of the pro-
posed method is essentially superior. The overall results 
demonstrate that the proposed DL-based workflow 
achieved promising performance in both CTV and GTV 
segmentation for rectal cancer neoadjuvant radiotherapy.

In Level-2, multicenter-involved, blind and randomized 
expert scoring was performed. The proposed DL-based 
method achieved 96.4% and 100% of clinically viable 
scores (≥ 2) for CTV and GTV segmentation respectively, 
indicating promising clinical applicability. While the DL 
contours showed a significant difference from the GT for 
GTV segmentation, since 99.5% of the DL contours were 
clinically viable, the clinical implication of being statisti-
cally different is negligible.

For the head-to-head Turing test in Level-3 evaluation, 
the proposed DL-based method not only passed the posi-
tive rate threshold (30%), but also was comparable with 

Fig. 6 Frequency counts and relative (%) distribution of each grade in expert scoring. The p-values of GT vs. DL were calculated using Mann-Whitney 
U-test (* significance level < 0.05)

 



Page 9 of 10Geng et al. Radiation Oncology          (2023) 18:164 

GT in expert subjective preference for both CTV and 
GTV segmentation. This excellent performance of the 
DL-based method indicates substantial potential in clini-
cal application.

The evaluation results indicate two limitations of our 
work. First, we did give special arrangement of cases with 
LNI for model training and tuning, and consequently 
the current CTV model exhibits inadequate coverage of 
surrounding lymph nodes for patients with LNI. We will 
address this issue in future work to improve the overall 
capability of the proposed approach. Second, the cur-
rent GTV model delivered one outlier case with major 
errors in superior and interior boundaries, indicating 
uncertainty in GTV boundary definition. The limitations 
implicate, if the current models were deployed for clinical 
application, clinicians should be careful of patient enroll-
ment and manual review should be required in case of 
inadequate or excessive target coverage. In addition, only 
20 patient cases were used for model performance test-
ing. Future efforts will be made to enroll more patients to 
further verify the model robustness.

Conclusion
The proposed DL-based workflow demonstrates prom-
ising accuracy and excellent clinical viability towards 
automated CTV and GTV delineation for rectal cancer 
neoadjuvant radiotherapy.

Abbreviations
95HD  95th percentile Hausdorff distance
CNN  convolutional neural network
CT  computed tomography

CTV  clinical target volume
DDCNN  deep dilated CNN
DL  deep-learning
DPN  dual-path network
DSC  Dice similarity coefficient
GT  ground truth
GTV  gross tumor volume
MRI  magnetic resonance imaging
OAR  organ-at-risk
ROI  region of interest
RT  radiotherapy
SD  standard deviation

Acknowledgements
The authors sincerely thank the RO physician team at Peking Union Medical 
College Hospital for their insightful comments on study design. The authors 
also thank Dr. Guichao Li, Hongzhen Li, Jinluan Li, Gang Ren, Xianan Li, 
Hao Wang, Fengpeng Wu, Ying Xiong, Weiwei Xiao, Yongjing Yang for their 
contribution in the blind and randomized evaluation.

Authors’ contributions
JG, XZ and ZL contributed equally to this paper. JG, XZ and ZL retrospectively 
collected patient data and drafted the manuscript. QC, LB and SW designed 
and trained the DL models. HW and YL performed data analysis. HY was the 
Sub-I and YD was the PI. All authors read and approved the final manuscript.

Funding
This work was supported in part by the Beijing Natural Science Foundation 
(No. 1212011, 1202009), National Natural Science Foundation of China (No. 
12375335, 12005007), National Key Research and Development Project (No. 
2019YFF01014405), and Clinical Research Project of Wu Jieping Medical 
Foundation (No. 320.6750.2022-3-59).

Data availability
The data that support this study are not openly available due to ethical and 
privacy concerns but are available from the corresponding author upon 
reasonable request.

Fig. 7 Head-to-head Turing test results of CTV and GTV (DL vs. GT). The passing threshold for DL contours is 30%

 



Page 10 of 10Geng et al. Radiation Oncology          (2023) 18:164 

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
The study was approved by the IRB of Peking University Cancer Hospital, 
China.

Consent for publication
All the authors reviewed the manuscript and approved the final submission to 
Radiation Oncology.

Author details
1Key laboratory of Carcinogenesis and Translational Research (Ministry of 
Education/Beijing), Department of Radiation Oncology, Peking University 
Cancer Hospital & Institute, Beijing 100142, China
2Research and Development Department, MedMind Technology Co., Ltd, 
Beijing 100083, China
3Institute of Medical Technology, Peking University Health Science Center, 
Beijing 100191, China

Received: 30 May 2023 / Accepted: 13 September 2023

References
1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer 

J Clin. 2016;66(2):115–32.
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN 

estimates of incidence and Mortality Worldwide for 36 cancers in 185 coun-
tries. CA Cancer J Clin. 2021;71(3):209–49.

3. Yang Y, Wang HY, Chen YK, et al. Current status of surgical treatment of rectal 
cancer in China. Chin Med J (Engl). 2020;133(22):2703–11.

4. Bonadeo FA, Vaccaro CA, Benati ML, et al. Rectal cancer: local recurrence after 
surgery without radiotherapy. Dis Colon Rectum. 2001;44(3):374–9.

5. van Gijn W, Marijnen CA, Nagtegaal ID, et al. Preoperative radiotherapy 
combined with total mesorectal excision for resectable rectal cancer: 12-year 
follow-up of the multicentre, randomized controlled TME trial. Lancet Oncol. 
2011;12(6):575–82.

6. Yang J, Veeraraghavan H, Armato SG, et al. Autosegmentation for thoracic 
radiation treatment planning: a grand challenge at AAPM 2017. Med Phys. 
2018;45(10):4568–81.

7. Glimelius B, Tiret E, Cervantes A, Arnold D, ESMO Guidelines Working Group. 
Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and 
follow-up. Ann Oncol. 2013;24(Suppl 6):vi81–8.

8. Benson AB, Venook AP, Al-Hawary MM, et al. Rectal Cancer, Version 2.2022, 
NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 
2022;20(10):1139–67.

9. Myerson RJ, Garofalo MC, Naqa E. Elective clinical target volumes for confor-
mal therapy in anorectal cancer: a radiation therapy oncology group consen-
sus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74(3):824–30.

10. Valentini V, Gambacorta MA, Barbaroet B, et al. International consensus 
guidelines on clinical target volume delineation in rectal cancer. Radiother 
Oncol. 2016;120(2):195–201.

11. Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and 
organs at risk in the planning CT for rectal cancer using deep dilated convo-
lutional neural networks. Med Phys. 2017;44(12):6377–89.

12. Men K, Boimel P, Janopaul-Naylor J, et al. Cascaded atrous convolution and 
spatial pyramid pooling for more accurate tumor target segmentation for 
rectal cancer radiotherapy. Phys Med Biol. 2018;63(18):185016.

13. Larsson R, Xiong JF, Song Y et al. Automatic delineation of the clinical target 
volume in rectal Cancer for Radiation Therapy using three-dimensional 
fully convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc. 
2018:5898–901.

14. Wu Y, Kang K, Han C, et al. A blind randomized validated convolutional neural 
network for auto-segmentation of clinical target volume in rectal cancer 
patients receiving neoadjuvant radiotherapy. Cancer Med. 2022;11(1):166–75.

15. Song Y, Hu J, Wu Q, et al. Automatic delineation of the clinical target volume 
and organs at risk by deep learning for rectal cancer postoperative radio-
therapy. Radiother Oncol. 2020;145:186–92.

16. Wang J, Lu J, Qin G, et al. Technical note: a deep learning-based autosegmen-
tation of rectal tumors in MR images. Med Phys. 2018;45:2560–4.

17. Jin L, Chen Q, Shi A, et al. Deep learning for automated contouring of gross 
tumor volumes in Esophageal Cancer. Front Oncol. 2022;12:892171.

18. Yue Y, Li N, Shahid H, et al. Gross tumor volume definition and comparative 
Assessment for esophageal squamous cell carcinoma from 3D 18F-FDG PET/
CT by Deep Learning-Based method. Front Oncol. 2022;12:799207.

19. Liu Z, Liu X, Guan H, et al. Development and validation of a deep learning 
algorithm for auto-delineation of clinical target volume and organs at risk in 
cervical cancer radiotherapy. Radiother Oncol. 2020;153:172–9.

20. Xu L, Hu J, Song Y, et al. Clinical target volume segmentation for 
stomach cancer by stochastic width deep neural network. Med Phys. 
2021;48(4):1720–30.

21. Müller D, Soto-Rey I, Kramer F. Towards a guideline for evaluation metrics in 
medical image segmentation. BMC Res Notes. 2022;15:210.

22. Liu Z, Chen W, Guan H, et al. An adversarial deep-learning-based model for 
Cervical Cancer CTV Segmentation with Multicenter Blinded Randomized 
Controlled Validation. Front Oncol. 2021;11:702270.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Towards deep-learning (DL) based fully automated target delineation for rectal cancer neoadjuvant radiotherapy using a divide-and-conquer strategy: a study with multicenter blind and randomized validation
	Abstract
	Introduction
	Materials & methods
	Data collection and preparation
	DL model for CTV and GTV segmentation
	DpnUnet architecture
	Model training


	Performance evaluation
	Level 1: quantitative metrics based objective evaluation
	Level 2: blind & randomization expert scoring
	Level 3: blind & randomization based head-to-head turing test

	Results
	Level 1: DSC and 95HD
	Level 2: expert scoring
	Level 3: head-to-head turing test

	Discussion
	Conclusion
	References


