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Abstract 

Adaptive radiotherapy (ART) was introduced in the late 1990s to improve the accuracy and efficiency of therapy 
and minimize radiation-induced toxicities. ART combines multiple tools for imaging, assessing the need for adapta-
tion, treatment planning, quality assurance, and has been utilized to monitor inter- or intra-fraction anatomical varia-
tions of the target and organs-at-risk (OARs). Ethos™ (Varian Medical Systems, Palo Alto, CA), a cone beam computed 
tomography (CBCT) based radiotherapy treatment system that uses artificial intelligence (AI) and machine learning 
to perform ART, was introduced in 2020. Since then, numerous studies have been done to examine the potential ben-
efits of Ethos™ CBCT-guided ART compared to non-adaptive radiotherapy. This review will explore the current trends 
of Ethos™, including improved CBCT image quality, a feasible clinical workflow, daily automated contouring and treat-
ment planning, and motion management. Nevertheless, evidence of clinical improvements with the use of Ethos™ 
are limited and is currently under investigation via clinical trials.
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Introduction
For the majority of courses of external beam radiother-
apy today, a typical process begins with a single treat-
ment plan generated at the simulation step and carried 
through the entire course [1]. Given time and resource 
constraints, these plans are rarely modified over the 
course of treatment despite the internal changes within 
the patient that may lead to errors in dose placement, 
suboptimal disease responses, and avoidable radiation-
induced toxicities. Adaptive radiotherapy (ART) was 

introduced in the late 1990s as a “closed-loop radia-
tion treatment process where the treatment plan can be 
modified using a systematic feedback of measurements” 
[2, 3]. Its primary goal has been to improve the accuracy 
and efficiency of therapy and minimize radiation-induced 
toxicities. By 2010, ART was widely described within the 
radiation oncology literature [4, 5]. ART combines multi-
ple tools for imaging, assessing the need for adaptation, 
treatment planning, quality assurance, and has been uti-
lized to monitor inter- or intra-fraction anatomical varia-
tions of the target and organs-at-risk (OARs). These tools 
can enable dose escalation or maintaining coverage of 
target doses while reducing doses to OARs [3, 6–9].

The implementation of ART is categorized into three 
major classes. (1) Offline ART, in which scheduled 
imaging between fractions is used to detect systematic 
and progressive changes that occur during the treat-
ment course. (2) Online ART entails the adjustment of 
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treatment plans prior to radiation delivery to account 
for inter-fraction changes, both temporal and stochastic, 
while the patient remains in the treatment position. (3) 
Real-time ART, which accounts for intra-fractional vari-
ations and allows for automatic plan adjustments during 
radiation delivery without manual intervention [3]. Both 
offline [6, 10–13] and online [14–23] ART has shown 
improvements in target coverage and OAR sparing in 
cancers of the prostate, head and neck, lung, abdomen, 
and pelvis. Executing ART requires adequate information 
for target and OAR delineation, accurate dose calcula-
tion, and sufficient image quality [3].

Given rapid and recent advancements in online ART 
technology, most commonly delivered either with lin-
ear accelerators combined with onboard magnetic reso-
nance imaging (“MRI-Linac”) or CBCT-guided systems, 
a review that describes the technical and clinical state of 
the art is necessary. This comprehensive review will focus 
on published and presented data on CBCT-guided online 
ART with the Ethos™ system. We also evaluate the feasi-
bility of applying this system to a greater clinical context 
and discuss future directions. We located peer-reviewed 
articles and abstracts on the topic of CBCT-guided online 
ART published from 2019, which was the first year that 
Ethos was under investigation, to present day. A search 
of following terms were conducted in PubMed: ““CBCT-
guided” OR “CT-Guided” AND “real-time adaptive” OR 
“online adaptive” OR “ontable adaptive” OR “Ethos”. We 
excluded publications regarding proton therapy, brachy-
therapy, MR-Linac, offline ART, and CT-based ART in 
which CT is not an integrated part of the treatment sys-
tem (e.g., CT on rails).

CBCT‑based online ART 
Before each treatment, the process of CBCT-guided ART 
begins with the use of a cone shaped X-ray beam where 
the kilovoltage (kV) source and a flat panel detector 
rotates around a patient on the treatment table [24, 25]. 
The acquired CT image is then automatically segmented 
into various organs and bony structures [26]. Based on 
this delineation of the day’s anatomy, the system gener-
ates a preview of the dose distribution for OARs and the 
disease target from a prioritized list of clinical goals, fol-
lowed by creation of multiple deliverable treatment plans 
[26]. At this time, the best plan deemed by the radia-
tion oncologist was selected as the reference plan and 
approved through a quality assurance (QA) protocol [26]. 
Finally, treatment is delivered to the patient, and the pro-
cess is repeated prior to subsequent treatments.

Conventional CBCT has been widely used for position-
ing of patients during ART, but has significantly inferior 
image quality due to increased radiation scatter com-
pared to traditional fan-beam (planning) CT [27]. New 

image reconstruction algorithms such as iterative CBCT 
(iCBCT) have enhanced the overall quality CBCT image 
generation to create more accurate CBCT-based image-
guided radiotherapy (IGRT) [27, 28]. Ethos™ (Varian 
Medical Systems, Palo Alto, CA), a radiotherapy treat-
ment system that uses artificial intelligence (AI) and 
machine learning to perform ART, was introduced in 
2020. The system integrates iCBCT [29], and provides a 
highly efficient adaptive workflow while the patient is on 
the treatment couch, allowing a physician to select either 
the reference plan or the adapted treatment plan within a 
typical 15–25 min scheduled time slot [29].

kV CBCT image quality
High-quality images that are obtained quickly are neces-
sary for auto-segmentation and on-table adaption dur-
ing a short treatment time slot. Cai et al. investigated the 
image quality of kV CBCT on Halcyon™ 2.0, which the 
Ethos™ kV CBCT was built upon [30]. The kV CBCT can 
rapidly acquire high quality images with iterative recon-
struction that yield high contrast-to-noise ratio (CNR) 
[30]. In addition, the fast gantry motion allows for single 
breath-holding imaging, which can minimize artifacts 
and provide potential for on-table structure delineation 
[30]. Schiff et al. also reported, the image quality of sin-
gle breath-hold is acceptable for ART with Ethos™, as the 
treating physician or medical physicist did not reject any 
images due to poor quality [31, 32]. However, one limita-
tion of kV CBCT is the narrowfield-of-view (FoV) which 
is overcome by fusing the daily kV CBCT with the plan-
ning CT and deformation as its registration [34].

This limitation can be also be overcome by the new 
HyperSight™ CBCT technology which has novel features 
such as extended FoV up to 70 cm, as well as an advanced 
reconstruction techniques for improved image qual-
ity [33, 35, 36]. Also, it captures images in less than 6 s, 
which is 10 times faster than a conventional linear-accel-
erator-based imaging system (Fig.  1) [35, 37, 38]. This 
allows tumors that move with respiration to comfortably 
perform a single breath-hold for the machine to obtain 
high-quality images needed for daily treatment planning 
and delivery. It also includes the ability to perform dose 
calculation directly on the native images. The relevance 
of this advancement in ontable imaging to CBCT-guided 
ART is clear; clearer, high-contrast images will improve 
contouring, speed up the generation of adaptive plans, 
and enhance confidence in adaptive plan quality.,.

Feasibility of CBCT‑based online ART in normal clinical 
workflow
A typical appointment slot in a ARTtreatment session 
is generally reserved for 15- 30 min, thought the range 
could be larger. A large portion of the time will be used 
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for precise positioning of the patient, followed by radia-
tion delivery. The time to complete the adaptive com-
ponent of the workflow, which is defined as the ART 
procedural time, includes additional steps between the 
collection of the CBCT and the first beam on. These 
steps include an auto-segmentation process, review-
ing and optional editing of the autocontours, plan re-
optimization, dose calculation, and a quality-assurance 
check (Fig.  2) [39, 40]. Often, clinician presence is 
required to assess and adjust online autocontouring 
and perform plan review [41]. Therefore, the introduc-
tion of ART has raised concerns about adding poten-
tially time-consuming steps and clinician involvement 
into an already time-constrained workflow.

The ART procedural time heavily depends on the dis-
ease site (Table  1). For example, the reported Ethos™ 
ART procedural time on average ranged from 10 to 
12 min for prostate cancer [42, 43]. The median overall 
planning time was mostly dependent on the number of 
fields (intensity-modulated radiotherapy [IMRT]) and 
arcs (volumetric modulated arc therapy [VMAT]) that 
were used: 2.6 min for 7 field IMRT; 3.1 min for 9 field 
IMRT; 3.4  min for 12 field IMRT; 13.2  min for 2 arc 
VMAT; and 14 min for 3 arc VMAT [36]. For complex 
prostate stereotactic body radiotherapy (SBRT), the 
procedural time is significantly longer [44].

For abdominal and pelvic malignancies, which included 
reports on the pancreas, liver, bile duct, retroperitoneum, 
rectum, anus, and abdominal oligometastases, the aver-
age procedural time ranged from 17 to 36 min [31, 45–
47]. The longer procedural time could be explained by 
the normal peristaltic motion of the gastrointestinal (GI) 
tract, as well as daily differences in bladder filling and 
stool burden, leading to a higher tendency for abdomi-
nal organs to shift [48]. Therefore, more time is likely 
required for contouring edits of the PTV and OARs by 
the treating physician. Specifically for locally advanced 
pancreatic cancer (LAPC), the emphasis on dose-esca-
lated radiotherapy to improve local control and survival 
outcomes can further increase the ART procedural time, 
with OAR contouring being the most time-consuming 
step [47]. ART for bladder cancer (procedural time rang-
ing from 14 to 32  min) [39, 49, 50] and cervical cancer 
(16 to 24 min) [40, 51] follows a similar logic with bladder 
filling and stool burden, while lung malignancies (15 min) 
[52] is heavily dependent on respiratory motion, all of 
which would lead to relatively longer procedural time 
(Tables 1, 2).

In head and neck cancers, a combination of factors 
such as tumor response, inflammation, muscle atrophy, 
and weight changes could alter target volumes and shift 
OARs into radiation fields over the course of a treatment 

Fig. 1 HyperSight™ CBCT technology captures larger images with better contrast within only 6 s, which allows tumors that move with respiration 
to comfortably perform a single breath-hold for the machine to obtain high-quality images needed for daily treatment planning and delivery
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[53]. An average of 20 min is spent on the Ethos™ ART 
process for head and neck malignancies [53]. For adaptive 
stereotactic partial breast irradiation (ABPI), the average 
ART procedural time was 15 min [54]. ART has also been 
used in hippocampal-avoidance whole brain radiother-
apy (HA-WBRT) and has reported an average procedural 
time of 44 min by Kang et al., with approximately 22 min 
dedicated to contour adjustments for positional differ-
ences between diagnostic and on-table imaging [55]. It 
is also important to note that adaptation procedural time 
shortens with site experience and across subsequent frac-
tions in individual patients [47, 49, 56].

Patients undergoing ART currently spend a signifi-
cantly longer time on the couch during treatment than 
patients treated without on-table adaptation, with most 
of the time used for contouring edits and treatment plan 
review. Nevertheless, most ART sessions can fit into a 
normal clinical workflow without causing significant 
delay, as the majority of cases require minimal contour-
ing edits and plan review. Given the potential improve-
ment in target coverage and OAR sparing, the extended 
treatment time may be worthwhile. With the current 
state of rapidly improving technology in treatment plan-
ning and auto-segmentation [57], it is expected that 
ART procedural time will continue to decrease. In addi-
tion, sites involved in on-table ART have demonstrated 
that radiation therapists can lead the online ART work-
flow with minimal input from radiation oncologists, and 
achieve better efficiency with similar treatment efficacy 
[58].

Treatment planning workflow
Multiple studies have shown that the treatment plan 
quality generated by the Intelligent Optimization 
Engine (IOE) is consistent with that of manually opti-
mized treatment plans. Calmels et  al., demonstrated 
that highly consistent IMRT plans were generated by 
the IOE in 60 pelvic cases with equivalent coverage and 
OAR sparing compared to manually optimized plans 
[36]. Roover et  al., observed that the automated treat-
ment plans for prostate SBRT cases achieves similar 
plan quality as those that were manually optimized, cit-
ing inter-planner variation as the main cause of dosi-
metric differences [53].

The Ethos™ automated treatment planning process 
differs from the traditional steps that are utilized in 
conventional treatment planning. The most notable dif-
ference comes from the automated optimization pro-
cess that is conducted by the IOE. The IOE takes the 
input of an ordered and ranked list of clinical goals as 
the physician’s intent. This intent is converted into tra-
ditional optimization objectives with additional heu-
ristics and optimization structures the user does not 
control [29]. Careful consideration of these ranked and 
ordered goals are important as they are also used for 
generating the online adaptive treatment plans which 
account for dosimetric tradeoffs that can be seen in the 
patient anatomy of the day. The process of optimizing 
the plans via clinical goals allows clinicians to make 
intuitive judgments when comparing the dosimetric 
results between the scheduled and adapted plans.

Fig. 2 Workflow comparison between IGRT and adaptive radiotherapy
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The Ethos™ treatment unit utilizes Mobius 3D-Adapt 
as an independent plan QA check for online adaptive 
radiation therapy treatments. A retrospective study by 
Zhao et  al. performed patient specific QA for 16 adap-
tive plan sessions and found the gamma passing rate to 
be 99% (± 0.7%) [59].

Auto‑contouring impact on plan quality
High-quality, high-efficiency ART sessions require a 
robust auto-contouring and auto-planning system. 

In a study of 25 prostate cancer patients, the quality 
of Ethos™ autocontours before and after manual edit-
ing were studied [60]. Moazzezi et al. reported that for 
most patients even without manual edits, the target 
coverage and OAR doses met clinical goals after adap-
tion [60]. Mao et  al. in a study of 10 locally advanced 
lung patients (and 290 total fractions), also compared 
the dosimetric consequences of adapting with unedited 
vs. edited autocontours [61]. They found that clini-
cal target volume (CTV) coverage was improved by 

Table 2 10 published abstracts of dosimetric studies of CBCT-guided ART 

*The initial adaptation is from a plan generated from a diagnostic image, not a sim CT

Disease site Article Number 
of 
Patients

Adapted 
Fractions 
Evaluated

Online ART procedural time Outcomes

Bladder Azzarouali et al. [43] 5 – Median 32 min Improved PTV coverage 
with adaptive planning

Bladder Storm et al. [44] 17 132 Median 14 min Intra-fractional variations dur-
ing online ART of bladder cancer 
were limited, which may be 
explained by a strict bladder 
filling regimen

Bladder Zwart et al. [61] 3 – – Adapted plan coverage 
was ≥ 99% for all sessions, 
compared to only 2/73 session 
reached this level for scheduled 
plans

Bony Metastases (Lumbar 
and Thoracic Spine, and Pelvis)

Nelissen et al. [57] 8 – Average 36 min Patients were satisfied 
with the procedure and com-
pleted consultation and treat-
ment within two hours

Brain Kang et al. [49] 7 – Average 44.2 min* Adaptation improved target 
coverage and limited hotspots 
in the hippocampal avoidance 
zone

Breast Stanley et al. [58] 2 – – Daily adaptive replanning shows 
potential for reduced PTV mar-
gins and reduced OAR doses

Head and Neck Dohopolski et al. [60] 10 – – Adapted planning significantly 
improved median V100% cover-
age, homogeneity, and total 
median dose reduction in OARs

Lung Gonzalez et al. [46] 18 68 Average 15 min Significant improved target cov-
erage, dose conformity, and OAR 
sparing with online adaptive 
planning

Lower lung and Upper Abdo-
men

Kim et al. [50] 8 36 Average 27 min CBCT-guide ART demonstrated 
inter- and intra-fractional motion
Residual motion of tumor 
was comparable to that of 
the imaging-surrogate 
within clinical PTV mar-
gins (5 mm) but a bit larger 
than the pre-configured gating 
window

Liver, Pelvis, Abdomen, 
and Lung

Musunuru et al. [62] 15 – – Adapted plans had superior 
coverage, and nearly always 
met OAR tolerances compared 
to scheduled plans
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adapting with autocontouring, while further improve-
ments were made with manually edited structures. 
OAR doses were sometimes decreased but not cumu-
latively across the treatment course. They concluded 
that “Accuracy of Ethos™ automatic contouring is con-
sidered clinically acceptable”. Byrne et al. also reported 
that the adaptive plan was selected in 95% of the deliv-
ered fractions over the scheduled plan; 11% of the 
auto-generated contours needed no changes and 81% 
required only minor edits [44]. Nevertheless, physician 
review of daily auto-segmentation was still necessary 
for all patients in the case of outliers [60].

The consistency of Ethos™ auto-contouring and auto-
planning functionalities has been positively reported 
in the literature. Chapman et  al. used deformations of 
a pelvic phantom to evaluate the robustness and repro-
ducibility of Ethos™ auto-segmentation and planning 
[57]. High reproducibility and accuracy were observed 
for structures such as femoral heads, bowel, and rectum; 
reproducibility was less consistent for prostate and blad-
der, both of which more often required additional edit-
ing [57]. Despite the large deformations in the target and 
surrounding OARs, auto-generated plans met all clinical 
constraints [57]. Limitations with regard to auto-con-
touring can occasionally provide dosimetrically less accu-
rate plans. For example, air-gaps between bolus and skin 
are often filled in during auto-contouring and assumed to 
be excess tissue unless corrected by user, or large changes 
in bowel gas leading to inaccurate deformations [62].

Ethos‑driven single visit palliative treatment
In palliative treatment, a fast workflow is ideal to hasten 
relief, reduce anxiety, and minimize inconvenience for the 
patient. In one study of bony metastases in the spine and 
pelvis, 47 patients were treated in a single visit without 
a planning CT scan [63]. A “rough” plan was generated 
based on diagnostic images prior to the visit, and the plan 
was then adapted online using the Ethos™ CBCT [63, 64]. 
Adaptative plans were selected for all patients because of 
significant improvements in target coverage (PTV/CTV 
 V95%, p value < 0.005) compared to the diagnostic based 
non-clinical reference plan and the majority of patients 
(~ 63%) required no or only minor contouring edits [63]. 
The study met its main goal to implement a simulation 
free workflow for single visit delivery of CBCT-based 
ART delivery within 2  h, leveraging diagnostic CT for 
pre-planning; median time for the workflow was 85 min, 
with 30  min spent in the treatment room. Most impor-
tantly, patients reported satisfaction with length of the 
consultation and treatment session, with 80% of patients 
stating they would choose future radiation procedures in 
the same treatment pathway [63].

OAR sparing and target coverage improvements
Over a course of treatment, normal physiologic organ 
shifts and radiation-induced tumor responses may lead 
to anatomical changes in the disease target and sur-
rounding tissues. Significant dosimetric improvements 
are derived using Ethos™ CBCT-guided online ART. In 
abdominal oligiometastases, according to Schiff et  al., 
75% (30 out of 40) of the fractions had OAR constraint 
violations without plan adaption, while only 5% (2 out of 
40) of the fractions had violations with adaptation [31]. 
Similar improvements were achieved in pancreatic can-
cer, in which 97.5% (39 out of 40) non-adapted fractions 
had OAR constraint violations, compared to 0% (0 out of 
40) in adapted fractions [47]. OAR dose reductions were 
also seen with Ethos™ in breast [65], bladder [39], cervi-
cal [40, 51], prostate [42–44, 60, 66], and head and neck 
[67] malignancies.

In terms of target coverage, gross tumor volume (GTV) 
 V100% and  D95% improved in 62.5% (25 out of 40) and 50% 
(20 out of 40) of abdominal oligometastases plans with 
the use of Ethos™ CBCT-guided online ART [31]. Adap-
tive planning also achieved better planning target vol-
ume (PTV) coverage in studies involving diseases sites 
in breast [54, 65], bladder [39, 49, 68], brain [55], head 
and neck [53, 67], lung [52, 61], pancreas [47], pelvis [46, 
69], and prostate [42–44, 66]. However, for cervical and 
rectal cancers, the reported target coverage was similar 
between adapted and non-adapted plans [40, 70]. In one 
study of prostate cancer by Moazzezi et al., the improve-
ment in CTV  D98% with ART was minimal [60].

During treatment planning, narrower margins help 
reduced OAR doses while preserving target coverage. 
Ethos™ CBCT-guided ART accounts for interfraction 
changes and, due to the treatment speed, minimizes 
the impact of intrafraction motions allowing for mar-
gin reductions. Ray et al. reported that prostate margins 
could be reduced to 3 to 4  mm symmetrically without 
altering the CTV coverage with the use of Ethos™ [71]. 
In treated bladder cancer, ART plans achieved a median 
42% primary PTV reduction and 24–30%  V45Gy reduc-
tion to the bowel cavity compared to non-ART plans 
[46]. Significant PTV bladder and head and neck volume 
reduction were also achieved by Aström et  al. [39] and 
Dohopolski et al. [67], respectively.

Motion management
Target and OAR motion during the ART procedure may 
result in errors and reduce the quality of adaptive plans. 
Surface-guided radiation therapy (SGRT), which uses 
optical surface scanning for patient positioning, can be 
used with ART for intra-fraction motion monitoring 
and respiratory gating especially for lung and abdominal 
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malignancies [72]. It provides real-time motion monitor-
ing of the patient surface throughout the whole treatment 
fraction. The beam can be held if parts of the patient’s 
surface deviate from the reference position based on the 
planning CT set-up or if the calculated isocentric devia-
tions exceed a certain threshold [72].

Nevertheless, the actual magnitude of internal organ 
movement during procedure treatment was previously 
unknown. Storm et  al. studied intra-fraction bladder 
motion during the adaptive procedure in 17 patients 
treated with Ethos™ by comparing the patient positions 
from the initial CBCT, prior to the ART process, to the 
CBCT directly before beam on time and observed only 
small changes in bladder volume and center of mass posi-
tion, with a median time of 14 mintues between the two 
scans [50]. Zwart et al. compared prostate position on the 
CBCT taken just prior to the beam on time to that on the 
CBCT immediately after treatment, with a mean time of 
4.2 ± 0.6 min between scans [73]. The 95th percentile of 
prostate motion ranged from 1.7 mm in the x-direction 
to 3.2 mm in the z-direction, which suggests that smaller 
PTV margins can be safely implemented in clinical prac-
tice. Storm et al. captured a median 8.5  cm3 increase in 
bladder filling volume with a second CBCT after the 
adaptive planning CBCT and prior to treatment deliv-
ery [50]. Finally, Jong et al. also obtained a second CBCT 
to validate with respect to the CTV coverage immedi-
ately prior to treatment delivery, which took on average 
20  min, and reported excellent motion management in 
rectal cancer in the vast majority of cases except for two 
incidence of workflow interruption due to the second 
CBCT having insufficient target coverage [26].

Future directions
The studies summarized in this review have shown 
improvements in radiotherapy by reducing doses to nor-
mal tissues, improving target coverage, and increasing the 
potential for dose escalation. However, the question that 
naturally follows is, do these technical advances translate 
into improved clinical outcomes? Currently, there are 
ongoing clinical trials investigating clinical outcomes and 
PROs obtained with the use of Ethos™ CBCT-based ART 
across a wide range of disease sites including cancers of 
the head and neck (NCT04883281, NCT04379505), lung 
(NCT05488626), pancreas (NCT05764720), bladder 
(NCT05295992, NCT05700227), cervix (NCT05197881), 
and anus (NCT05438836). These studies are designed 
to demonstrate meaningful improvements in treatment-
related side effects, such as acute GI toxicity in the treat-
ment of bladder cancer and advanced cervical cancers, by 
comparing Ethos™ CBCT-based ART to the standard of 
care.

Conclusion
Online ART entailing treatment plans adjusted prior 
to delivery to account for temporal and stochastic 
changes observed in a single treatment fraction while 
the patient remains in the treatment position is feasi-
ble with Ethos™ CBCT-guided ART system. The auto-
segmentation tool performs well with some editing and 
the procedural time with learning can be reduced to 
15–30 min based on the complexity of anatomical site. 
There are dosimetric gains seen in either reduced dose 
to OARs, improved target coverage, or dose escalation 
while maintaining OAR tolerance doses. Ongoing pro-
spective studies will help define clinical gain in terms 
of local control, reduced morbidities, and better patent-
reported outcomes.
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