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Abstract
Despite combination chemotherapy demonstrating a positive effect on survival, the clinical outcomes of 
pancreatic adenocarcinoma (PDAC) remain poor. Radiotherapy was previously a component of the curative 
treatment of PDAC. Advances in imaging and computer sciences have enabled the prescription of higher dosage 
of radiation focused on tumours with minimal toxicity to normal tissue. However, the role of radiotherapy has 
not been established in the curative treatment of localized PDAC because of the conflicting results from large 
prospective trials. Most studies have demonstrated improved locoregional control but no survival benefit from 
additional chemoradiotherapy (CRT) in addition to chemotherapy for resectable, borderline or locally advanced 
PDAC. The improved locoregional control enabled by CRT does not cause extended survival because of rapid 
distant progression in a significant proportion of patients with PDAC. Several single-institute studies of prescribing 
intensive chemotherapy with modern ablative radiotherapy for locally advanced PDAC have demonstrated 
extended survival with an acceptable safety profile. In an analysis after long-term follow-up, the PREOPANC study 
demonstrated a survival benefit from neoadjuvant gemcitabine-based CRT in resected PDAC relative to upfront 
surgery followed by adjuvant gemcitabine only. These observations indicated that the role of radiotherapy in PDAC 
should be evaluated in a subgroup of patients without rapid distant progression because systemic therapy for 
PDAC remains underdeveloped. We reviewed critical imaging, tissue, liquid and clinical biomarkers to differentiate 
the heterogeneous biologic spectra of patients with PDAC to identify those who may benefit the most from 
local radiotherapy. Exclusion of patients with localised PDAC who develop distant progression in a short time and 
undergo extended upfront chemotherapy for over 4 months may enable the identification of a survival benefit 
of local radiotherapy. Though promising, the effectiveness of biomarkers must be validated in a multi-institutional 
prospective study of patients with PDAC receiving CRT or not receiving CRT.
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Background
No evidence of survival benefit from radiotherapy as 
curative treatment for PDAC
Pancreatic ductal adenocarcinoma (PDAC) is one of 
the most severe malignancies among all solid tumours, 
with a 5-year survival rate of less than 10% [1, 2]. Most 
patients with PDAC present with locally advanced pan-
creatic cancer (LAPC) or metastatic disease that is not 
suitable for resection [3]. Chemotherapy, radiotherapy, 
and modern targeted, immunologic therapy exhibit lim-
ited efficacy in treating PDAC. Therefore, patients with 
PDAC usually experience rapid recurrence in the form of 
locally destructive diseases or distant metastasis [4, 5].

The development of combination chemotherapy con-
sisting of (modified) leucovorin calcium (folinic acid), 
fluorouracil, irinotecan hydrochloride, oxaliplatin (FOL-
FIRINOX) [6, 7], and gemcitabine plus nab-paclitaxel 
(GEM-Nab) [8] has resulted in superior tumour response 
and survival compared with chemotherapy using single- 
agent GEM or 5-fluorouracil (5FU) in patients with met-
astatic or unresectable PDAC. Prospective randomized 
trials have demonstrated the overall survival (OS) ben-
efit of adjuvant chemotherapy using FOLFIRINOX (54.4 
vs. 35.0 months, p = 0.003) [9], GEM plus capecitabine 
(GEM-Cape; 28.0 vs. 25.5 months, p = 0.032) [10], or 
GEM plus nab-paclitaxel (41.8 vs. 37.7 months, p = 0.009) 
[11] compared with using single-agent GEM to treat 
resected PDAC. For borderline resectable PDAC, neo-
adjuavant chemotherapy achieves a higher R0 resection 
rate and survival than does upfront surgery [12–14]. A 
meta-analysis of seven trials with 938 patients revealed 
significantly improved OS using neoadjuvant therapy (29 
vs. 19 months, p = 0.001), especially among patients with 
borderline resectable PDAC (p = 0.004) [15].

Unlike that of chemotherapy for PDAC, the efficacy 
of radiotherapy as an adjuvant or curative treatment 
for PDAC is limited. The results of the European Study 
Group for Pancreatic Cancer-1 (ESPAC-1) trial led to the 
omission of radiotherapy from most European adjuvant 
trials involving resectable PDAC [16]. We conducted a 
prospective randomised study to evaluate chemo-radio-
therapy (CRT) with adjuvant 6-month GEM. The results 
indicated improved local control (loco-regional recur-
rence rate of GEM vs. GEM-CRT arms: 54.1% vs. 38.4%, 
p = 0.056) but no survival benefit (median OS of GEM vs. 
GEM-CRT: 23.5 vs. 21.5 months, p = 0.73 ) from adminis-
tering additional CRT to patients with curatively resected 
PDAC [17]. The results of the Radiation Therapy Oncol-
ogy Group (RTOG) 0848 study evaluating adjuvant CRT 
in resected PDAC after adjuvant GEM are highly antici-
pated [18]. However, the impact of RTOG 0848 may be 
less relevant because FOLFIRINOX and GEM-Cape 
have become the standard of care for adjuvant chemo-
therapy [9, 10]. For borderline resectable PDAC, the 

PREOPANC-1 study [13, 14] demonstrated long-term 
survival improvement (median OS: 15.7 vs. 14.3 months, 
p = 0.025; 5-year survival rate: 20.5% vs. 6.5%) with neo-
adjuvant GEM-based CRT and improved loco-regional 
control (p = 0.004) compared with adjuvant GEM alone. 
The ESPAC-5 [19] and A021501 [20] studies have dem-
onstrated extended survival with neoadjuvant chemo-
therapy especially using FOLFIRINOX in ESPAC-5 
(1-year survival rate: 84% vs. 39% for immediate surgery, 
p = 0.0028). Despite the high R0 resection and pathologic 
complete remission rate, neoadjuvant radiotherapy was 
not associated with favourable survival in either study. 
For LAPC, the LAP07 study [21] identified better local 
control (46% vs. 32%, p = 0.03) but no survival benefit 
(11.9 months vs. 13.6 months, p = 0.09) from the addi-
tion of CRT after induction GEM. These results conflict 
with the report from the Eastern Cooperative Oncol-
ogy Group trial, which indicated a survival benefit from 
upfront GEM-based CRT compared with GEM alone 
(11.1 vs. 9.2 months, p = 0.017) [22]. The conflicting 
results of the randomized studies concerning borderline 
resectable and locally advanced PDAC imply a narrow 
therapeutic window associated with radiotherapy.

Reasons of continued evaluation of radiotherapy for 
curative PDAC treatment
The role of CRT has been questioned because of contro-
versial clinical trial results. However, CRT remains under 
careful consideration for PDAC for several reasons: 
First, the survival outcomes of PDAC remain inferior 
compared to those of other solid tumours. Novel thera-
peutic options and modern techniques including stereo-
tactic body radiotherapy (SBRT), magnetic resonance 
(MR) imaging guided radiotherapy and proton therapy 
enabled highly conformal and tolerable radiation to be 
given with solutions for respiratory motion and reduced 
toxicity to the gastrointestinal area [23, 24]. The Mas-
sachusetts General Hospital group demonstrated total 
neoadjuvant therapy with eight cycles of FOLFIRINOX 
and losartan, an inhibitor of thrombospondin-1 medi-
ated activation of latent tumour growth factor β (TGFβ), 
followed by a short or long course of modern radiother-
apy for 49 patients with LAPC resulted in a high rate of 
down-staging and R0 resection in 61% of patients, with 
a median progression-free survival (PFS) and OS of 17.5 
and 31.4 months, respectively [25]. Ablative radiotherapy 
of 75 Gy in 25 fractions was administered to 119 patients 
with inoperable PDAC following multiagent induction 
chemotherapy at Memorial Sloan Kettering Cancer Cen-
ter. The retrospective analysis revealed safe and durable 
local control with a median OS of 26.8 months [26]. 
These studies may influence and inspire current stan-
dard approaches. Second, the margin positivity rate and 
locoregional recurrence rate are high in PDAC, despite 
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radical surgery and intensive systemic chemotherapy [9, 
10, 27]. A rapid autopsy study indicated that one-third 
of patients with PDAC die from local destructive disease 
without widespread distant metastasis [28]. The efficacy 
of locoregional control and palliation by radiotherapy has 
been demonstrated in most studies of PDAC. Jolissaint 
et al. compared the clinical outcomes of patients with 
PDAC receiving ablative radiotherapy (n = 104) or surgi-
cal resection (n = 105). Despite a selection bias favour-
ing the surgical group, the incidence of locoregional 
recurrence was similar (16% vs. 21%, p = 0.252) [29]. The 
excellent locoregional outcomes achieved using modern 
radiotherapy should be integrated into multimodality 
treatment of PDAC. Third, the survival benefit of CRT 
has been demonstrated after exclusion of patients with 
PDAC with early progression. In the PREOPANC study 
[14], a significant survival benefit was demonstrated for 
CRT after long term follow-up (p = 0.025). The steep ini-
tial slope of the survival curve, representing early pro-
gression, starts to bend and clearly separate from that 
of patients not receiving CRT after a year from diag-
nosis, indicating a small difference in median survival 
(1.4months; 15.7 vs. 14.3 months) between the groups; 5- 
year survival exhibited a 14% difference (20.5% vs. 6.5%). 
These results are consistent with the general consensus to 
prescribe CRT after initial systemic treatment. Accord-
ingly, selecting patients with PDAC with low risk of early 
disease progression is crucial to translate local control 
using CRT into a survival benefit.

This review highlights the role of biomarkers in predict-
ing patients with PDAC with low risk of early progression 
and who are thus suitable for being considered for subse-
quent radiotherapy with or without concomitant chemo-
therapy. A biomarker is a characteristic that is objectively 
measured and evaluated as an indicator of normal bio-
logical processes, pathogenic processes or pharmacologic 
responses to therapeutic intervention [30].

Potential biomarkers for identifying patients with 
PDAC suitable for radiotherapy
Imaging biomarkers
Radiomics, refers to the extraction and analysis of 
numerous quantitative features from medical images, 
and it has shown early promise in the analysis of imag-
ing features and in prognostic modeling and outcome 
analysis [31]. The baseline imaging textural profile of the 
tumour microenvironment, including vascularity and 
oxygenation, and tumor heterogeneity was correlated 
with pathologic and clinical outcomes in resected PDAC 
(Table 1). Radiomic features derived from textural signals 
and groupings of pixels of baseline contrast-enhanced 
computed tomography (CT) in resectable PDAC were 
demonstrated to predict OS after surgery [32]. The signal 
intensity multiplied by the contour volume of pancreas 

was inversely associated with the pathologic lymph node 
category and correlated with the OS and PFS of patients 
with resected PDAC [33]. A seven-feature radiomic sig-
nature of a contrast-enhanced CT simulation scan could 
predict locoregional recurrence in patients with PDAC 
receiving SBRT [34]. Blood perfusion of tumor from CT 
scans was correlated with fractional tumour cell death 
in PDAC. The normalised area under the enhancement 
curve (nAUC) was correlated with OS and response 
to CRT patients with borderline resectable PDAC and 
LAPC [35]. These studies demonstrated baseline CT to 
be a potential tool for predicting the clinical outcomes of 
PDAC. If further validated, the signature could be used to 
help select patients who may benefit from neoadjuvant or 
adjuvant CRT.

CT imaging profiles after upfront chemotherapy for 
PDAC are associated with clinical outcomes. A more 
defined interface response of tumor post chemotherapy 
was associated with prolonged OS among patients with 
borderline resectable or locally advanced PDAC [36]. 
Four radiomic features from simulation CT scans were 
selected to construct a model to predict resectability in 
LAPC after neoadjuvant CRT [37]. Radiomic signatures 
indicating the relationship between tumours and key 
arteries from CT for radiotherapy treatment planning 
predicted local control, resectability and OS for border-
line resectable and locally advanced PDAC cases after 
systemic chemotherapy [38, 39]. Patients’ longitudinal 
radiomic data progress throughout treatment (delta-
radiomics) were able to help assess treatment response 
earlier and more reliably [40]. Yamamoto et al. estab-
lished a logistic growth pattern of PDAC and defined the 
Local Advancement Index (LAI) to determine eventual 
primary tumour size and predict the number of metas-
tases; a smaller LAI value indicates a larger metastatic 
burden. Radiotherapy after induction chemotherapy 
improved the survival of patients with larger LAI values 
[41]. The subgroup of patients with PDAC suitable for 
consolidative CRT after upfront or induction chemo-
therapy may be differentiated using potential radiomic 
parameters developed after chemotherapy.

Furthermore, diffusion-weighted MR quantitative met-
rics after chemotherapy were demonstrated to indicate 
response of patients with PDAC to chemotherapy [42]. 
Collagen molecular imaging using selective MR enhance-
ment of fibrosis with CM-101, a type I collagen-targeted 
probe, revealed a robust fibrotic response after neoad-
juvant therapy of FOLFIRINOX and correlated with 
improved survival in murine model of PDAC receiving 
CRT [43]. The preoperative uptake value of fluoro-deox-
yglucose positron emission tomography (FDG-PET) and 
metabolic response to neoadjuvant therapy could predict 
the OS of patients with PDAC [44–48].
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The ability of radiomic signatures to provide superior 
information for evidence-based clinical decision-making 
regarding PDAC is promising. To select patients who 
will benefit from radiotherapy, potential radiomic sig-
natures should be explored in prospective clinical trials 
and validated through expansion of the available dataset, 
preferably in a multi-institutional study. Standardisation 
of radiomic signatures and imaging modalities to reduce 
inter-observer variability is also necessary.

Histopathologic, liquid and clinical biomarkers
Molecular classifications of PDAC based on genomic, 
transcriptomic, proteomic and epigenetic data have 
provided considerable insights into the molecular het-
erogeneity and aggressive biology of PDAC [49]. Sev-
eral potential biomarkers have been demonstrated to 
enable differentiation of the failure patterns in patients 
with PDAC. (Table  2) SMAD4 gene status and expres-
sion have been highly correlated with radiosensitivity 
and the initial failure site of PDAC in clinical and pre-
clinical studies [28, 50, 51]. In a phase II prospective 
study of 69 patients with LAPC, a local dominant pat-
tern of progression was identified in patients with intact 
SAMD4 and not in those with SMAD4 loss (73% vs. 28%, 
p = 0.016) [52]. A retrospective study of 641 patients with 
resected PDAC demonstrated that inactivated SMAD4 
was strongly associated with metastatic recurrence (haz-
ard ratio (HR) = 4.28, 95% CI = 2.75–6.68). Improved sur-
vival with additional radiotherapy was observed only in 
patients with PDAC with SMAD4 expression (p = 0.002). 
The investigators concluded that patients with SMAD4 
expression benefit more from intensive local control [53]. 
Whittle et al. further demonstrated that heterozygous 
mutation of SMAD4 attenuated the metastatic poten-
tial of PDAC and increased its proliferation. Loss of the 
heterozygosity of SMAD4 restored metastatic compe-
tency and further increased proliferation– a highly lethal 
combination. The authors further demonstrated that 
RUNX3 responded to and interacted with SMAD4 sta-
tus to regulate the balance between cancer cell division 
and dissemination, and they suggested that RUNX3 and 
SMAD4 levels can be used together to inform clinical 
decision-making for resectable PDAC [54]. Krüppel-like 
factor 10 (KLF10), a TGFβ early-response gene, has been 
demonstrated by investigators, including us, to contrib-
ute to PDAC radiosensitivity, epithelial - mesenchymal 
transition, and cancer stemness and progression [55–57]. 
We evaluated potential biomarkers including SMAD4, 
RUNX3 and KLF10 in tumour tissues from 111 patients 
with resected PDAC randomised to adjuvant GEM with 
or without CRT [58]. Loss of both SMAD4 and KLF10 
expression in patients with curatively resected PDAC was 
associated with rapid development of distant metasta-
sis; those who expressed either SMAD4 or KLF10 had a 

significantly higher chances of benefiting from adjuvant 
CRT (for patients with KLF10 or SMAD4 expression: 
GEM–CRT vs. GEM: PFS ∞ vs. 19.8 months; p = 0.026; 
OS 33 vs. 23 months; p = 0.12) [58]. The tryptophan cat-
abolic enzyme, indoleamine 2,3 dioxygenase-2 (IDO2) 
has been demonstrated to promote pancreatic tumouri-
genesis in preclinical studies [59]. An IDO2-deficient 
genotype correlates with improved PFS for patients with 
PDAC who received adjuvant radiotherapy (39.0 ± 6.3 vs. 
74.1 ± 6.4 months, p = 0.023). Analysis of metabolic pro-
files from patients with resectable PDAC receiving neo-
adjuvant therapy demonstrated a significant difference in 
choline metabolism between those responding favour-
ably and unfavourably. Lower levels of choline and phos-
phocholine correlated with a low recurrence rate among 
patients with PDAC receiving neoadjuvant CRT [60]. 
Genomic profiling using targeted gene sequencing for 
radiotherapy response prediction was evaluated among 
88 patients with cancer receiving local tumour irradia-
tion. Alterations of DNA repair pathways and mutations 
of CHEK2, MSH2 and NOTCH1 were associated with 
durable local control using radiotherapy [61]. A radia-
tion sensitivity index (RSI) score for intrinsic tumour 
radiosensitivity derived from the expression of 10 specific 
genes (HDAC1, PKCb, RelA, c-Abl, STAT1, AR, Cdk1, 
c-Jun, SUMO1, and IRF1) and a linear regression algo-
rithm modeled on the surviving fraction at 2 Gy (SF2) of 
48 cancer cells were evaluated for 73 patients with PDAC 
receiving surgery with or without radiotherapy. Among 
high-risk patients, radiotherapy provided significantly 
improved survival among radio-sensitive patients com-
pared with radio-resistant patients (p = 0.04). This differ-
ence was not observed among low-risk patients [62]. The 
RSI score was combined with the linear quadratic model 
to derive a genomic-adjusted radiation dose (GARD) by 
the same group of investigators to identify the optimum 
radiotherapy dose at a patient-specific molecular signa-
ture level. A high GARD value predicted a strong thera-
peutic effect of radiotherapy and greater time to first 
recurrence and OS. GARD independently predicted clin-
ical outcomes for pancreatic cancer, and its use enabled 
the individualization of radiotherapy dose according to 
the tumour radiosensitivity [63, 64].

Several peripheral blood biomarkers have been dem-
onstrated to determine survival or therapeutic response 
in PDAC (Table  3). Absolute monocyte count during 
CRT and changes in the lymphocyte-to-monocyte ratio 
correlated with OS and PFS among patients with LAPC 
treated with CRT [65]. The baseline neutrophil-to-lym-
phocyte ratio (NLR) and NLR dynamics during neoadju-
vant chemotherapy were independently associated with 
pathologic response in resectable PDAC [66]. Despite 
not being specific to a cancerous condition and a lack 
of expression in 5 -10% of patients, CA19-9 is the most 
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used tumour marker for monitoring therapy for PDAC. 
A decrease in the CA19-9 level after neoadjuvant therapy 
is correlated with improved OS and pathologic major 
response in PDAC [67–69]. We analyzed CA19-9 change 
during adjuvant chemotherapy among 125 patients with 
resected PDAC with or without adjuvant radiation. Sig-
nificant correlations of CA19-9 response with initial 
failure at distant sites and OS were identified. However, 
neither postoperative CA19-9 level nor CA19-9 response 
were helpful in identifying patients who may experience 
a survival benefit from additional adjuvant CRT [70]. A 
retrospective analysis reported that a high level of car-
cinoembryonic antigen but not CA19-9 before neoad-
juvant CRT was the most significant predictor of poor 
survival after surgery for PDAC [71]. Regarding other cir-
culating biomarkers, baseline CC motif chemokine ligand 
5 (CCL5) was identified as an independent prognostic 
biomarker for OS in patients with LAPC in the Selective 
Chemoradiation in Advanced Localised Pancreatic Can-
cer (SCALOP) study, which evaluated induction GEM-
Cape and CRT [72]. A correlation between CCL5 levels 
and failure patterns was not identified. Increasing evi-
dence indicates that microRNAs (miRNAs) may serve as 
diagnostic, predictive and prognostic biomarkers in vari-
ous cancer entities, including PDAC. The expression of 
miRNAs was correlated with pancreatic cancer progres-
sion and radio-resistance [73]. A four-miRNA molecular 
signature (miR-29c, miR-125a, miR-155, and mR-200b) 
was developed to predict risk of locoregional recurrence 
and OS after PDAC resection. Using the miRNA risk 
score has potential for identifying patients with PDAC 
who are most likely to benefit from postoperative CRT 
[74]. Circulating tumor DNA (ctDNA) is released into 
the peripheral blood stream during cell death. The pres-
ence of ctDNA in patients with PDAC after neoadjuvant 
therapy indicates recurrence and poor survival [75, 76]. 
Circulating tumour cells that enter peripheral blood are 
thought to contribute to metastatic disease with worse 
survival [77]. In an analysis of the Surveillance, Epide-
miology, and End Results database, patients with PDAC 
with a tumour location over the pancreatic head, stage 
II/III cancer, T4 cancer, N1 cancer, regional resection, 
or lymphadenectomy of ≥ 4 lymph nodes were demon-
strated to benefit from adjuvant radiotherapy [78, 79]. 
Several studies have revealed that a combined analysis of 
radiomic features, clinical parameters, pathology score, 
and tissue/serum biomarkers improves the prognostic 
power of clinical outcomes in PDAC [32, 80].

Conclusions
Despite progress in surgical techniques and systemic 
therapy, the survival outcomes of patients with PDAC 
remain unsatisfactory. Radiotherapy was a central com-
ponent of treatment for PDAC. The value of CRT to 

PDAC has been questioned because of conflicting results 
of clinical trials. Most studies have been criticised for 
low patient numbers, poor study design, inappropriate 
radiation doses or split-course regimens, and poor adher-
ence to the radiation protocol [81–83]. However, sev-
eral prospective trials have demonstrated the efficacy of 
modern radiation therapy, with an elevated dosage and 
reduced toxicity to the small bowel, exhibiting a satisfac-
tory safety profile, local control, and prolonged survival 
for localised PDAC [25, 26]. In addition to the technical 
improvement of radiotherapy, the development of radi-
ogenomics and the biology of radiotherapy for PDAC 
may help to optimise the integration of radiotherapy in 
multimodality PDAC treatment strategies. Because dis-
tant metastases are more effectively controlled through 
modern systemic therapy, local control of the primary 
site is increasingly critical for patients with PDAC with 
extended survival [23]. Advances in radiomic, tissue, or 
peripheral biomarkers may enable superior stratification 
of patients’ metastatic potential and prediction of those 
who would most likely benefit from enhanced locore-
gional therapy. However, studies evaluating the role of 
potential biomarkers have mostly been retrospective and 
have demonstrated correlations with survival but not 
failure patterns. Multi-institutional prospective clinical 
trials that validate candidate biomarkers in patients with 
PDAC receiving up-to-date systemic chemotherapy with 
or without modern radiotherapy are urgently required.

The role of radiotherapy in the curative treatment of 
PDAC remains unclear. In designing future clinical trials, 
the exclusion of patients with early distant progression 
by extended systemic therapy (≥ 4 months) and predic-
tive biomarkers is reasonable. Local control using radio-
therapy may yield a survival benefit, especially among 
patients with PDAC without early distant metastasis.
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