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HLA‑DQA1 expression is associated 
with prognosis and predictable with radiomics 
in breast cancer
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Abstract 

Background  High HLA-DQA1 expression is associated with a better prognosis in many cancers. However, the asso-
ciation between HLA-DQA1 expression and prognosis of breast cancer and the noninvasive assessment of HLA-DQA1 
expression are still unclear. This study aimed to reveal the association and investigate the potential of radiomics 
to predict HLA-DQA1 expression in breast cancer.

Methods  In this retrospective study, transcriptome sequencing data, medical imaging data, clinical and follow-up 
data were downloaded from the TCIA (https://​www.​cance​rimag​ingar​chive.​net/) and TCGA (https://​portal.​gdc.​cancer.​
gov/) databases. The clinical characteristic differences between the high HLA-DQA1 expression group (HHD group) 
and the low HLA-DQA1 expression group were explored. Gene set enrichment analysis, Kaplan‒Meier survival analysis 
and Cox regression were performed. Then, 107 dynamic contrast-enhanced magnetic resonance imaging features 
were extracted, including size, shape and texture. Using recursive feature elimination and gradient boosting machine, 
a radiomics model was established to predict HLA-DQA1 expression. Receiver operating characteristic (ROC) curves, 
precision-recall curves, calibration curves, and decision curves were used for model evaluation.

Results  The HHD group had better survival outcomes. The differentially expressed genes in the HHD group were sig-
nificantly enriched in oxidative phosphorylation (OXPHOS) and estrogen response early and late signalling pathways. 
The radiomic score (RS) output from the model was associated with HLA-DQA1 expression. The area under the ROC 
curves (95% CI), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the radi-
omic model were 0.866 (0.775–0.956), 0.825, 0.939, 0.7, 0.775, and 0.913 in the training set and 0.780 (0.629–0.931), 
0.659, 0.81, 0.5, 0.63, and 0.714 in the validation set, respectively, showing a good prediction effect.

Conclusions  High HLA-DQA1 expression is associated with a better prognosis in breast cancer. Quantitative radiom-
ics as a noninvasive imaging biomarker has potential value for predicting HLA-DQA1 expression.
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Key points 

1.	 High HLA-DQA1 expression is associated with a better prognosis in breast cancer.
2.	 The differentially expressed genes in  the  HHD group were significantly enriched in  OXPHOS and  estrogen 

response early and late signalling pathways.
3.	 The expression of HLA-DQA1 in breast cancer could be predicted with the radiomics model.

Keywords  Breast cancer, Biomarker, Prognosis, Human leukocyte antigen, Radiomics

Introduction
Breast cancer is the most common malignant tumour 
and the second most common cause of cancer-related 
death in women worldwide  [1]. The Cancer Genome 
Atlas Network revealed large differences between dif-
ferent breast cancer subtypes  [2]. The polymorphism 
of human leukocyte antigen (HLA) is associated with 
the risk for and progression of various autoimmune 
and malignant diseases  [3]. HLA-DQA1 belongs to 
the alpha chain of human major histocompatibility 
complex class II (MHC-II) and plays a decisive role in 
the pathogenesis of breast cancer  [4]. In addition, the 
HLA-DQA1 gene predicts hepatotoxicity risk in breast 
cancer treated with epidermal growth factor receptor 
(EGFR) inhibitors  [5].

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is the most accurate method for diagnos-
ing and evaluating breast cancer, with modest sensitivity 
and specificity (approximately 70%) [6]. Radiomics based 
on DEC-MRI is currently a focus of cancer research 
and has the advantages of being noninvasive, rapid, 
affordable and repeatable. It can reflect the underlying 
molecular and genotypic basis of the tissue, providing 
unprecedented insights and facilitating a deeper under-
standing of breast cancer development and progression 
[7–11]. However, the ability of radiomics to assess the 
expression of HLA-DQA1 in breast cancer is unclear.

In the present study, the relationship between HLA-
DQA1 expression and breast cancer prognosis was 
explored, and then the potential molecular mechanisms 
of different HLA-DQA1 expression groups were ana-
lysed. Finally, a radiomics model that can predict HLA-
DQA1 expression was established as a new practical 
imaging biomarker for breast cancer prognosis.

Methods and materials
Dataset acquisition
The data analysed in this retrospective study were 
obtained from The Cancer Genome Atlas (TCGA, 
https://​portal.​gdc.​cancer.​gov) and The Cancer Imaging 

Archive (TCIA, http://​www.​cance​rimag​ingar​chive.​
net/) databases. Ethical approval was granted by the 
institutional review board of the TCIA host institution.

Dataset A: Genetic data were obtained from the TCGA-
BRCA cohort, comprising 1097 patients. After exclud-
ing 51 patients with a survival time of less than 30 days or 
with missing survival data, 51 patients with incomplete 
clinical data, 12 male patients, and 21 patients with pri-
mary tumours in other sites, 962 patients were included 
in the study. According to the expression of HLA-DQA1, 
the patients were divided into a high HLA-DQA1 expres-
sion group (HHD group) (n = 492) and a low HLA-DQA1 
expression group (LHD group) (n = 470) by the cut-off 
value 4.105 of the median expression level, and statistical 
description was performed.

Dataset B: Imaging data were obtained from the TCIA-
BRCA cohort, comprising 137 patients. After excluding 
29 patients with poor image quality or postoperation and 
4 without gene expression data available, 104 patients 
were included in the imaging genomics analysis. The 
dataset was randomly divided into a training set (n = 63) 
and a validation set (n = 41) at a ratio of 6:4, and statisti-
cal description was performed.

Bioinformatics analysis
Data processing
RNAseq data in the format of transcripts per million 
reads (TPM) for both TCGA and GTEx were down-
loaded from UCSC Xena (https://​xenab​rowser.​net/​datap​
ages/), and then all 179 normal tissue data from GTEx 
were extracted. The RNAseq data were processed uni-
formly by the Toil program and then analysed after log2 
transformation  [12].

Differential expression analysis
Breast cancer tissue data from TCGA-BRCA and 
normal tissue data from GTEx were extracted and 
log-transformed. The differences in HLA-DQA1 expres-
sion among the HHD, LHD, and normal groups were 
compared.

https://portal.gdc.cancer.gov
http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/


Page 3 of 12Zhou et al. Radiation Oncology          (2023) 18:117 	

Functional enrichment analysis
Gene set enrichment analyses (GSEA) for the KEGG 
(c2.cp.kegg.v7.5.1.symbols.gmt) and Hallmark (h.all.
v7.5.1.symbols.gmt) gene sets were performed on each 
sample using the "clusterProfiler" package in R. Results 
with P values less than 0.05 and false discovery rate 
(FDR) values less than 0.25 were considered significant.

Survival analysis
The “cmprsk”, “survival” and “forestplot” packages of R 
were applied. Kaplan‒Meier survival curves and Cox pro-
portional hazards regression models were used to calcu-
late the overall survival (OS) time. The log-rank test was 
used to test the significance of survival between groups. 
Univariate and multivariate Cox proportional hazards 
regression models were conducted to evaluate the effect 
of HLA-DQA1 on survival outcomes. The effect of HLA-
DQA1 in covariate subgroups was explored using strati-
fied analyses.

Radiomic analysis
Imaging data
DCE-MRI images from dataset B were obtained using 
T1-weighted spoiled gradient echo sequences and gado-
linium contrast medium, with sagittal or axial views. The 
average resolution was 0.7 mm (range 0.5–0.8). The slice 
thickness of the MRI sequence was approximately 2 mm, 
and the image size was 512 × 512 pixels or 256 × 256 pix-
els. In order to reduce the effect due to the variability of 
different types of image, spatial resampling and image 
intensity normalization were applied.

Imaging segmentation and image feature extraction
Lesion segmentation was performed in 3D-Slicer 
(v4.10.2; https://​www.​slicer.​org/). Volumes of inter-
est (VOIs) were manually delineated layer by layer by a 
double-blind radiologist (with 10  years of experience in 
radiology) independently. Another double-blind radiolo-
gist (with 5  years of experience in radiology) randomly 
selected 30 cases for secondary delineation. VOI deline-
ation followed these rules: (1) Selected the phase of MRI 
image with the most obvious lesion enhancement (the 
signal ratio of lesion to background) to depict the tumour 
area. (2) Considered all images comprehensively when 
delineating lesions. (3) Contrasted bilaterally to iden-
tify the mass, structural and signal changes, abnormal 
enhancement. (4) Determined the location and boundary 
of the lesions by adjusting the appropriate window width.

Image feature extraction was performed in PyRadi-
omics. A total of 107 radiomics features were extracted, 
including tumour size (such as volume, surface area, 
maximum three-dimensional diameter and long axis 
length), morphology (such as elongation, flatness and 

sphericity) and texture (such as energy, entropy, kurto-
sis, skewness, grey level size zone matrix (GLSZM), grey 
level dependence matrix (GLDM), grey level cooccur-
rence matrix (GLCM) and grey level run length matrix 
(GLRLM).

Imaging features were normalized separately for each 
scanner type and protocol to minimize the impact of dif-
ferences between different scanners and scanning pro-
tocols (z score normalization, mean = 0 and standard 
deviation = 1). The consistency between the two radiolo-
gists was compared, and the features with intraclass cor-
relation coefficients (ICCs) greater than or equal to 0.75 
were applied in the next step of the study.

Feature selection and radiomics model establishment
The “caret”, “pROC”, “measures”, “rms”, “rmda”, “ggpubr” 
and “Resource Selection” R packages were applied. Fea-
tures were screened by recursive feature elimination 
(RFE), and the radiomic model for HLA-DQA1 predic-
tion was established by a gradient boosting machine 
(GBM) algorithm. The algorithm’s task was to find the 
best performing feature set by maximizing the model’s 
accuracy on the training set.

Radiomics model evaluation
The model’s effectiveness was evaluated in the training 
and validation sets. Receiver operating characteristic 
(ROC) curves and precision-recall (PR) curves were used 
for model evaluation. The evaluation indexes included 
accuracy (ACC), specificity (SPE), sensitivity (SEN), posi-
tive predictive value (PPV) and negative predictive value 
(NPV). The calibration of the model was evaluated by 
drawing a calibration curve. The Hosmer‒Lemeshow 
test and BrierScore were used to quantify the compre-
hensive performance of the model. The decision curve 
(DCA) was drawn to demonstrate the clinical benefit of 
the model. The radiomic score (RS) for the prediction of 
HLA-DQA1 expression was obtained from the radiomics 
model and compared between groups.

Statistical analysis
R software (v4.1.0, https://​cran.r-​proje​ct.​org/) was 
used for the statistical analyses. Imaging features were 
extracted using PyRadiomics (python, v3.7.6, https://​
www.​python.​org/​downl​oads/). The above software 
is open source. The Shapiro‒Wilk test and one-way 
ANOVA were used for the normal distribution of con-
tinuous variable data. Variables conforming to a normal 
distribution and homogeneity of variance were tested 
by Student’s t test; otherwise, the Mann‒Whitney U test 
was used. The χ2 test or Fisher’s exact test was used for 

https://www.slicer.org/
https://cran.r-project.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
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categorical variables. The Kruskal‒Wallis or Wilcoxon 
test was used for measurement or ordinal data. Spear-
man’s test was used to assess the correlation between 
variables. The criterion for a statistically significant dif-
ference was P < 0.05.

Result
Bioinformatics analysis
The clinical characteristics of the 962 patients in 
Dataset A are shown in Table  1. There were signifi-
cant statistically differences in HER2 status, ER status, 

Table 1  Clinical characteristics of 962 breast cancer patients in the TCGA-BRCA cohort

HHD group high HLA-DQA1 expression group, LHD group low HLA-DQA1 expression group, PR progesterone receptor, ER estrogen receptor, HER2 human epidermal 
growth factor receptor 2, ILC infiltrating lobular carcinoma, IDC infiltrating ductal carcinoma, OS overall survival

Variables Total
(n = 962)

LHD-group
(n = 470)

HHD-group
(n = 492)

p

HLA-DQA1 expression, ( X± SD)*  < 0.001

4.147 ± 1.220 3.146 ± 0.744 5.103 ± 0.713

Age, n (%) 0.091

 ~ 59 521 (54) 241 (51) 280 (57)

 60~ 441 (46) 229 (49) 212 (43)

PR_status, n (%) 0.189

 Negative 307 (32) 140 (30) 167 (34)

 Positive 655 (68) 330 (70) 325 (66)

HER2_status, n (%) 0.033

 Negative 512 (53) 233 (50) 279 (57)

 Equivocal/Indeterminate 304 (32) 167 (36) 137 (28)

 Positive 146 (15) 70 (15) 76 (15)

ER_status, n (%) 0.001

 Negative 216 (22) 84 (18) 132 (27)

 Positive 746 (78) 386 (82) 360 (73)

Radiotherapy, n (%) 0.319

 No 456 (47) 231 (49) 225 (46)

 Yes 506 (53) 239 (51) 267 (54)

Chemotherapy, n (%) 0.006

 No 426 (44) 230 (49) 196 (40)

 Yes 536 (56) 240 (51) 296 (60)

T_stage, n (%) 0.124

 T1 258 (27) 126 (27) 132 (27)

 T2 547 (57) 256 (54) 291 (59)

 T3/T4 157 (16) 88 (19) 69 (14)

N_stage, n (%) 0.785

 N0 447 (46) 221 (47) 226 (46)

 N1/N2/N3/NX 515 (54) 249 (53) 266 (54)

M_stage, n (%) 0.482

 M0 797 (83) 394 (84) 403 (82)

 M1/MX 165 (17) 76 (16) 89 (18)

Histological_type, n (%) 0.006

 ILC 187 (19) 77 (16) 110 (22)

 IDC 682 (71) 336 (71) 346 (70)

 Other 93 (10) 57 (12) 36 (7)

OS, n (%) 0.004

 Alive 829 (86) 389 (83) 440 (89)

 Dead 133 (14) 81 (17) 52 (11)

OS.time, Median(Q1, Q3)

29.4 (16.3, 59.4) 29.4 (15.9, 55.8) 29.7 (16.6, 64.0) 0.404
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Fig. 1  Bioinformatics analysis results. A Comparison of HLA expression among the HHD, LHD and normal groups. B Kaplan‒Meier curves 
for patients in the HHD and LHD groups. C Univariate and multivariate Cox analyses of clinicopathological factors and key genes. D Subgroup 
analyses showed no interaction between the main variable HLA-DQA1 (high vs. low) and each covariate
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chemotherapy, histological type and overall survival 
between groups.

The expression of HLA-DQA1 in the HHD group and 
LHD group was higher than that in normal tissue, and 
the differences were statistically significant (Fig. 1A).

In the survival analysis, the HHD group had better sur-
vival outcomes than the LHD group (Fig. 1B). The median 
survival time of the LHD group was 115.4  months, and 
that of the HHD group was 217.77 months. Higher HLA-
DQA1 expression was associated with longer OS dura-
tions (P = 0.005).

In the univariate Cox proportional hazards regres-
sion analysis, HLA-DQA1 (HR (95% CI) = 0.609 (0.429–
0.864), P = 0.005), radiotherapy (HR (95% CI) = 0.389 
(0.272–0.558), P < 0.001) and chemotherapy (HR (95% 
CI) = 0.345 (0.236–0.503), P < 0.001) were protective 
factors for OS outcomes. After multivariate adjust-
ment, HLA-DQA1 (HR (95% CI) = 0.651 (0.453–0.936), 
P = 0.021), PR (HR (95% CI) = 0.554 (0.322–0.951), 
P = 0.032), radiotherapy (HR (95% CI) = 0.475 (0.32–
0.704), P < 0.001), and chemotherapy (HR (95% 
CI) = 0.461 (0.3–0.71), P < 0.001) were statistically 

significant protective factors for OS outcomes, while 
age and N stage were risk factors. Details are shown in 
Fig. 1C.

In the subgroup analysis (Fig. 1D), although high HLA-
DQA1 expression was a protective factor in subgroups 
of age > 60 years, all PR status, ER positivity, T stage 3/4, 
N stage 1–3, M stage 0, and IDC (P < 0.05), the P values 
for interaction tests between subgroups of each covariate 
were all greater than 0.05. Thus, there was no significant 
interaction between high HLA-DQA1 expression and 
each covariate; in other words, the effect of high HLA-
DQA1 expression on OS outcomes was similar across 
subgroups of each covariate.

The KEGG gene set enrichment analysis (Fig.  2) 
showed that the differentially expressed genes in the 
HHD group were significantly enriched in the oxida-
tive phosphorylation (OXPHOS) signalling pathway. 
Hallmark gene set enrichment analysis showed that the 
differentially expressed genes in the HHD group were 
significantly enriched in the estrogen response early and 
late signalling pathways.

Fig. 2  Visualization results of the top 20 pathways for the Hallmark and KEGG gene sets by gene set enrichment analysis
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Radiomic analysis
The clinical characteristics of the 104 patients in Dataset 
B are shown in Table 2. There was no significant statis-
tical difference in clinical characteristics between the 

training set and the validation set, indicating that the 
baseline of patients was similar and the division did not 
cause significant bias.

Table 2  Clinical characteristics of 104 breast cancer patients in the TCIA-BRCA cohort

PR progesterone receptor, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, ILC infiltrating lobular carcinoma, IDC infiltrating ductal carcinoma, 
OS overall survival

Variables Total
(n = 104)

Training
(n = 63)

Validation
(n = 41)

p

HLA-DQA1, n (%) 1

 Low 50 (48) 30 (48) 20 (49)

 High 54 (52) 33 (52) 21 (51)

Age, n (%) 0.251

 ~ 59 69 (66) 45 (71) 24 (59)

 60~ 35 (34) 18 (29) 17 (41)

PR_status, n (%) 1

 Negative 25 (24) 15 (24) 10 (24)

 Positive 79 (76) 48 (76) 31 (76)

HER2_status, n (%) 0.479

 Equivocal/Indeterminate 31 (30) 19 (30) 12 (29)

 Negative 58 (56) 37 (59) 21 (51)

 Positive 15 (14) 7 (11) 8 (20)

ER_status, n (%) 0.232

 Negative 17 (16) 13 (21) 4 (10)

 Positive 87 (84) 50 (79) 37 (90)

Radiotherapy, n (%) 0.15

 No 31 (30) 15 (24) 16 (39)

 Yes 73 (70) 48 (76) 25 (61)

Chemotherapy, n (%) 0.6

 No 27 (26) 18 (29) 9 (22)

 Yes 77 (74) 45 (71) 32 (78)

T_stage, n (%) 0.553

 T1 40 (38) 22 (35) 18 (44)

 T2 59 (57) 37 (59) 22 (54)

 T3/T4 5 (5) 4 (6) 1 (2)

N_stage, n (%) 0.519

 N0 53 (51) 30 (48) 23 (56)

 N1/N2/N3/NX 51 (49) 33 (52) 18 (44)

M_stage, n (%) 1

 M0 96 (92) 58 (92) 38 (93)

 M1/MX 8 (8) 5 (8) 3 (7)

Histological_type, n (%) 0.24

 IDC 89 (86) 51 (81) 38 (93)

 ILC 11 (11) 9 (14) 2 (5)

 Other 4 (4) 3 (5) 1 (2)

OS, n (%) 1

 Alive 103 (99) 62 (98) 41 (100)

 Dead 1 (1) 1 (2) 0 (0)

OS.time, Median (Q1,Q3) 0.727

40.53 (24.74, 64.03) 40.1 (25.15, 64.23) 40.97 (24.27, 60)
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The process of radiomics analysis was depicted in Fig. 3. 
The median ICC value of the radiomics features extracted 
by the two radiologists was 0.914, and there were 99 radi-
omics features with an ICC value greater than or equal 
to 0.75. After screening these features by RFE, five fea-
tures were used to establish the RFE-GBM radiomic 
model, namely, original_shape_Maximum2Ddiameter-
Slice, original_glszm_HighGrayLevelZoneEmphasis, 
original_shape_Maximum3DDiameter, original_shape_
MinorAxisLength, and original_shape_Maximum2D-
DiameterColumn. As shown in Fig. 4, the AUC of ROC 
curves (95% CI), accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value and BrierScore 
of the model were 0.866 (0.775–0.956), 0.825, 0.939, 
0.7, 0.775, 0.913 and 0.162 in the training set and 0.780 
(0.629–0.931), 0.659, 0.81, 0.5, 0.63, 0.714 and 0.189 in 
the validation set, respectively, showing a good predic-
tion effect. The RS value of HLA-DQA1 expression pre-
dicted by the model was significantly different between 
groups (P < 0.05). Higher HLA-DQA1 expression was 
associated with a higher RS value.

Discussion
HLA, a subtype of MHC class II molecule, is the most 
diverse molecular structural region expressed in humans. 
Low HLA-DQA1 expression was associated with poor 
prognosis in hepatocellular carcinoma, lung cancer, and 
soft tissue sarcoma patients as its reduction indicated the 
presence of an immunosuppressive microenvironment 
and invasive disease [13–15]. The results of the present 
study suggested that low HLA-DQA1 expression was 
associated with poor prognosis in breast cancer patients. 
As shown at baseline, there were more HER2-positive 
and ER-negative patients, and more patients receiving 
chemotherapy in the HHD group than in the LHD group. 
Although more aggressive, HER2-positive breast cancers 
respond better to chemotherapy, especially when com-
bined with trastuzumab and pertuzumab [16, 17], which 
may be the reason for the better prognosis in the HHD 
group. In the multifactor analysis of the present study, 
this opinion was supported by the protective effect of 
chemotherapy and the absence of HER2 as a risk factor.

Fig. 3  Graphical flowchart of the radiomics analysis. A Imaging data collection and lesion segmentation. B Feature extraction using PyRadiomics 
and feature selection using recursive feature elimination (RFE). C Modelling by the gradient boosting machine (GBM) algorithm and outputting 
the radiomics score (RS). D Model evaluation and application using ROC curves, the decision curve and the calibration curve
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The differences between  the HHD and LHD groups 
indicated that ER and HER2 receptors were epigeneti-
cally related to the expression of HLA-DQA1. Generally 
speaking, HER2 is thought to be mainly involved in the 
Ras/RAF/MEK/ERK pathway for cell proliferation and 
the PI3K/Akt/mTOR pathway for cell survival [18–20]. 
In the present study, the differentially expressed genes 
with high HLA-DQA1 expression were enriched in the 
OXPHOS, estrogen response early and estrogen response 
late signalling pathways. The enrichment of the estrogen 
response early and late signalling pathway may be caused 
by feedback regulation of ER-negative. Peroxisome pro-
liferator-activated receptor gamma co-activator 1 alpha 
(PGC1α) promotes metastasis by mediating mitochon-
drial biogenesis and OXPHOS in cancer cells. Estrogen-
related receptor α is a cofactor of PGC1α and an essential 
factor for nuclear mitochondrial gene transcription and 
mitochondrial biogenesis [21]. These results suggested 
that HLA-DQA1 might inhibit the growth of breast can-
cer by regulating mitochondrial metabolism through 
the PGC1α pathway. Confirmation of this relationship 
requires further experiments.

However, high HLA-DQA1 expression is not always a 
protective factor in cancer. Shen et al. [22] found that the 

expression of HLA-DQA1 was upregulated in esopha-
geal squamous cell carcinoma and associated with poor 
prognosis and shorter survival times. The higher the 
expression level of HLA-DQA1 is, the larger the tumour, 
and the higher the probability of familial disease will be. 
There are several possible causes: tumours are not sen-
sitive to targeted therapy, tumour proliferation is not 
regulated by mitochondrial metabolism, or high HLA 
expression is associated with other potential pathways. 
Therefore, in further studies, subgroup analysis of breast 
cancers that do not respond well to chemotherapy may 
yield new findings.

In a study of 47 triple-negative breast cancer (TNBC) 
patients  by RNA sequencing, HLA-DQA1 was associ-
ated with improved progression-free survival  [23]. By 
means of proteomics, Asleh K et al. [24] showed that high 
expression of HLA-DQA1 as a single tumour biomarker 
showed significantly better recurrence-free survival 
rates. The results of survival analysis of different HLA-
DQA1 expression levels  in the present study were con-
sistent with the previous studies. Unlike previous studies, 
this study was not limited to single molecular typing of 
breast cancer and used a different approach radiomics 
to predict HLA-DQA1 expression. Anchoring radiomics 

Fig. 4  Results of the evaluation of the RFE-GBM radiomics model. The AUC of ROC curves and the AUC of precision-recall curve (AUC​PR) 
of the model were 0.866 and 0.855, respectively, in the training set (A and B) and 0.780 and 0.723, respectively, in the validation set (E and F). The 
calibration curve and Hosmer‒Lemeshow test (C and G) showed that the prediction probability of high HLA-DQA1 expression was consistent 
with the true value, and P > 0.05 indicated good consistency. The DCA curve (D and H) showed that the model had clinical practicability 
within a certain range
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and HLA-DQA1 expression simplifies the HLA-DQA1 
assessment procedure and reduces costs, enabling per-
sonalized, precise medicine.

The central assumption of radiomics is that medical 
images contain information that reflects pathophysiol-
ogy that can be revealed by quantitative image analysis. 
Tumour heterogeneity has been suggested to be related 
to Ras signalling through the analysis of tumour subre-
gions and can be detected by radiomics [25]. Our results 
also demonstrated that radiomics could accurately and 
noninvasively estimate tumour HLA-DQA1 expression 
with AUCs of 0.866 and 0.780 in the training and valida-
tion groups, respectively. Radiomics provides substantial 
data related to microstructure heterogeneity, tumour 
microenvironment, and epigenetics for mining.

Zhu et al. [26] found that the quantitative MRI features 
of tumours (such as tumour size, shape, resection margin, 
and haemodynamics) correlated with their correspond-
ing molecular spectra (such as DNA mutations, miRNA 
expression, protein expression, pathway gene expression, 
and copy-number variations). In the present study, the 
morphological features and GLCM features had the best 
performance in revealing the biological characteristics of 
tumours. The morphological features of tumours were 
related to invasiveness, and GLCM features were related 
to heterogeneity. Moon et al. [27] found that DCE-MRI 
radiomics features based on wavelet transform GLCM 
had a better ability to identify TP53 and PIK3CA muta-
tions than morphological features in breast cancer. The 
more malignant the tumour is, the larger the volume, the 
more common the marginal infiltration and high hetero-
geneity will be. In the present study, the selected features 
contained more morphological features and had better 
performance than GLCM features.

Although we used public databases and open-source 
software to make our results generalizable, several limi-
tations remain. First, this study was retrospective, and 
genetic data were not routinely available for most breast 
cancer patients; thus, the sample size was small and 
might not be sufficiently representative. Genetic testing 
is expensive and complex, limiting large-scale imaging 
genomics studies. Second, the radiomic features used in 
our study might not be comprehensive; given the sample 
size of the study cohort, we used only the conventional 
feature sets from open-source software. It is neces-
sary to enrich the feature types in further study. Finally, 
even with normalization, different scanners, scanning 
schemes, and manual segmentation still affected the 
extraction of radiomics features. A prospective cohort 
study is required to be conducted.

Conclusion
In conclusion, the present study indicated that high HLA-
DQA1 expression is associated with a better prognosis in 
breast cancer patients and the differentially expressed 
genes are enriched in the OXPHOS, estrogen response 
early and estrogen response late signalling pathways. 
Although the above results still need to be validated in 
prospective cohort studies, quantitative radiomics has 
potential value as a noninvasive imaging biomarker for 
predicting HLA-DQA1 expression.
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