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Abstract
Background Current intensity-modulated radiation therapy (IMRT) treatment planning is still a manual and time/
resource consuming task, knowledge-based planning methods with appropriate predictions have been shown to 
enhance the plan quality consistency and improve planning efficiency. This study aims to develop a novel prediction 
framework to simultaneously predict dose distribution and fluence for nasopharyngeal carcinoma treated with IMRT, 
the predicted dose information and fluence can be used as the dose objectives and initial solution for an automatic 
IMRT plan optimization scheme, respectively.

Methods We proposed a shared encoder network to simultaneously generate dose distribution and fluence maps. 
The same inputs (three-dimensional contours and CT images) were used for both dose distribution and fluence 
prediction. The model was trained with datasets of 340 nasopharyngeal carcinoma patients (260 cases for training, 40 
cases for validation, 40 cases for testing) treated with nine-beam IMRT. The predicted fluence was then imported back 
to treatment planning system to generate the final deliverable plan. Predicted fluence accuracy was quantitatively 
evaluated within projected planning target volumes in beams-eye-view with 5 mm margin. The comparison between 
predicted doses, predicted fluence generated doses and ground truth doses were also conducted inside patient 
body.

Results The proposed network successfully predicted similar dose distribution and fluence maps compared with 
ground truth. The quantitative evaluation showed that the pixel-based mean absolute error between predicted 
fluence and ground truth fluence was 0.53% ± 0.13%. The structural similarity index also showed high fluence 
similarity with values of 0.96 ± 0.02. Meanwhile, the difference in the clinical dose indices for most structures between 
predicted dose, predicted fluence generated dose and ground truth dose were less than 1 Gy. As a comparison, the 
predicted dose achieved better target dose coverage and dose hot spot than predicted fluence generated dose 
compared with ground truth dose.
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Background
Radiation therapy is one of the important means to treat 
patients with cancer. With the aim to give sufficient high 
dose coverage to target and minimize the dose to nearby 
normal tissues and organs, the intensity-modulated radi-
ation therapy (IMRT) technique is most commonly used 
in clinics, which modulates the high-energy photon beam 
intensity by external devices such as multi-leaf collima-
tors (MLCs) [1, 2]. In addition, IMRT has the advantage 
to deliver conformal doses to targets and protect adjacent 
normal tissues and organs, therefore, it is widely used for 
head and neck cancer (nasopharyngeal carcinoma, etc.) 
treatment with complex anatomical structures [3, 4]. At 
present, treatment planning for IMRT is typically com-
pleted in a treatment planning system (TPS) via inverse 
plan optimization [5], where manual and tedious dose 
objectives and constraints tuning procedure is included 
[6]. Consequently, the planning process is time/resource-
consuming and the plan quality largely depends on the 
experience of the planners [7].

Thus, knowledge-based planning (KBP) methods were 
introduced to automate the planning process to enhance 
the plan quality and consistency and improve plan-
ning efficiency for IMRT [8–13]. Initially, it was done 
by dose objectives prediction to guide the subsequent 
inverse optimization or so-called dose mimicking [14]. 
Dose objective prediction aims to build a relationship 
between the anatomical structures and dosimetric char-
acteristics of patients based on machine learning from a 
large number of prior plans. Meanwhile, previous studies 
focused on specific dose criteria or dose volume histo-
grams (DVHs) prediction via traditional machine learn-
ing methods [15–18], the latest development predicted 
the patient 3D dose distribution by using deep convolu-
tional neural networks (CNNs), particularly U-Net and 
its derivatives [19–22]. The later dose mimicking step 
gets a plan to restore these predicted dose objectives by 
inverse optimization.

Moreover, recent studies had moved KBP methods 
to another stage, namely predicting deliverable fluence 
directly bypassing the inverse optimization, the final plan 
would be obtained by MLC leaf sequencing of the pre-
dicted fluence. Among these studies, Lee et al. used a 2D 
U-Net to generate fluence maps from organ contours and 
field doses viewed from the beam’s eye view for prostate 
IMRT plans [23]. Meanwhile, Wang et al. further used a 
CNN to initially predict field doses, and then converted 

these 3D field doses to 2D field doses and input them to 
another CNN to predict fluence maps for pancreas IMRT 
plans [24, 25]. Furthermore, Ma et al. utilized the idea of 
inverse mapping from the projections of the desired plan 
dose to generate fluence maps for volumetric modulated 
arc therapy plans [26]. Subsequently, Li et al. developed 
a deep learning algorithm to predict fluence from two 
kinds of 2D projection maps representing the patient’s 
anatomical information for prostate IMRT [27]. Then, 
they later extended the study to predict fluence for head-
and-neck (only low-risk target was included) IMRT plans 
[28]. Yuan et al. trained a two-stage CNN to predict flu-
ence for cervical cancer IMRT plans [29].

Although success has been achieved for fluence pre-
diction, particularly for IMRT plans, there are still some 
other issues that need to be addressed. First, deliver-
ing the plan generated by directly leaf sequencing of the 
solely predicted fluence is risky in a clinic, as it is diffi-
cult to know whether or not the predicted fluence is an 
optimal solution for a patient and the predicted fluence 
is realistic enough to deliver without significant plan 
quality loss. Predicting 2D fluence map directly from 3D 
structure set has a larger uncertainty than predicting 3D 
dose since of 3D-to-2D dimension issue and weak inher-
ent data correlation. Even though patient achievable 3D 
plan dose distribution is known, an inverse optimiza-
tion problem is usually solved to get the corresponding 
2D fluence map because of problem degradation [26]. In 
addition, converting 2D fluence map to a final deliverable 
plan includes a MLC leaf motion calculation and accu-
rate dose calculation step, plan quality loss is typically 
happened after conversion especially when the predicted 
fluence is not realistic enough. On the contrary, 3D dose 
distribution prediction has been well studied by many 
researchers and proved to be feasible for guiding auto-
matic plan optimization [20, 30, 31]. Hence, patient-spe-
cific dose information prediction is still desired to guide 
further optimization of plan generated from fluence 
prediction. Once the predicted fluence is known as not 
optimal, further optimization can be continued by using 
predicted patient-specific dose information as objectives 
and predicted fluence as initial values. Second, the above 
studies need either field dose predictions as model inputs 
or pre-determined 2D feature map extraction steps for 
fluence prediction [23–29]. Considering dose and flu-
ence are highly related, dose distribution prediction 
and fluence prediction can be unified under the same 

Conclusion We proposed an approach to predict 3D dose distribution and fluence maps simultaneously for 
nasopharyngeal carcinoma patients. Hence, the proposed method can be potentially integrated in a fast automatic 
plan generation scheme by using predicted dose as dose objectives and predicted fluence as a warm start.
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framework. Previously existing 3D dose distribution pre-
diction networks were then utilized without additional 
inputs and complex network architectures for fluence 
prediction. Third, most previous studies focused on flu-
ence predictions on relatively simple tumor sites (such as 
abdomen and pelvis), more complicated tumor sites with 
complex geometric relationship between targets and nor-
mal organs have not been fully investigated.

Therefore, in this work, we proposed an approach to 
simultaneously predict 3D dose distribution and fluence 
maps for more complicated nasopharyngeal carcinoma 
patients (five targets and seventeen organs included) 
treated with nine-beam IMRT. A shared encoder network 
extended from 3D U-Net was proposed, 260 patients 
were used to train an optimal model, and both dose dis-
tribution prediction and fluence prediction results were 
presented and evaluated with an independent test set of 
40 patients. Herein, the developed method can provide 
additional dose information to guide further plan opti-
mization for automatic plan generation based on fluence 
prediction.

Methods
Patient data and processing
The datasets were collected from 340 nasopharyngeal 
carcinoma patients treated with IMRT at Sun Yat-sen 
University Cancer Center. The Ethics Committee of Sun 
Yat-sen University Cancer Center approved the use of 
patient treatment plan samples in this study. All patients 
were irradiated with nine equally spaced beams (0°, 40°, 
80°, 120°, 160°, 200°, 240°, 280°, and 320°) and 6 MV pho-
ton beam energy by the same treatment machine of Var-
ian Trilogy system (Varian Medical Systems, Palo Alto, 
CA, USA). The datasets were randomly separated into 
training, validation, and test sets with 260, 40, and the 
remaining 40 cases, respectively.

Then, we extracted CT images, contours of plan-
ning target volumes (PTVs) and organ at risks (OARs), 
dose distribution, and nine-beam fluence maps from 
DICOM files of each patient. Herein, the PTV contours 
were expressed as a 3D mask filled with prescription 
doses. Five PTVs named ‘PTV-GTV’, ‘PTV-1’, ‘PTV-2’, 
‘PTV-LN(L)’ (PTV of left lymphonodus), and ‘PTV-
LN(R)’ (PTV of right lymphonodus) were considered, 
the maximum prescription dose of PTVs where the 
voxel belonged was assigned to each voxel of the mask. 
The prescription doses of PTV-GTV/PTV-1/PTV-2 had 
two combinations of 7000  cGy/6400  cGy/5800  cGy and 
7000 cGy/6000 cGy/5400 cGy. In addition, there were six 
prescription dose levels for PTV-LN(L) and PTV-LN(R), 
the possible values were 6000 cGy, 6200 cGy, 6400 cGy, 
6600 cGy, 6800 cGy, and 7000 cGy. Moreover, seventeen 
OARs were considered, including body, brainstem, spi-
nal cord, chiasm, tongue, left and right optic nerves, left 

and right lens, left and right temporal lobes, left and right 
mandibles, left and right temporomandibular joints, and 
left and right parotid glands. Each OAR was represented 
by a binary mask with one assigned inside the OAR and 
zero outside the OAR. All CT images, PTV and OAR 
masks, as well as dose volumes, were interpolated with a 
resolution of 2.5 mm × 2.5 mm × 2.5 mm and centered at 
a plan isocenter with a transverse slice size of 224 × 224.

The fluence maps were calculated based on the beam 
control point sequences by weighted summation of inter-
mediate MLC and jaw transmission masks for each field. 
The dosimetric leaf gap and MLC transmission values 
were obtained from the Varian Eclipse treatment plan-
ning system. Furthermore, the fluence maps of nine 
beams were calculated with a resolution of 2.5  mm × 
2.5 mm and then concatenated to a 3D matric with a size 
of 9 × 160 × 160. Consequently, the data of each case con-
tained one CT volume, one PTV mask, seventeen OAR 
masks, one dose volume, and one fluence volume.

Dose and fluence prediction network
Enlightened by the U-Net network with an end-to-end 
encoder-decoder structure which was widely used for 
patient 3D dose prediction tasks [21, 32, 33], we proposed 
a shared encoder network with minimal adjustments to 
the previous 3D U-Net to simultaneously generate dose 
distribution and fluence maps (Fig.  1). The same inputs 
were used for both dose distribution and fluence predic-
tion, neither field dose predictions nor feature map pre-
calculations were needed.

The network architecture included one encoding path 
with five resolution levels and two decoding paths with 
four resolution levels. Herein, one PTV mask, seven-
teen OAR masks, and one CT image were used as inde-
pendent channels for network input, hence, there were 
nineteen channels in total. In the encoding path, conven-
tional convolution and down sampling operations were 
employed to extract the key features and reduce the reso-
lution of images. The first level consisted of two convolu-
tion operations with a kernel size of 3 × 3 × 3 and stride of 
1. Meanwhile, for the below four levels of encoding path, 
each included one 3 × 3 × 3 convolution with a stride of 2 
for down sampling and one 3 × 3 × 3 convolution with a 
stride of 1 to learn features. After each down sampling, 
the channel of the feature maps was doubled and the size 
was halved. Consequently, the channel of feature maps 
was increased from 32 to 512 and the size was contracted 
from 32 × 224 × 224 (slice × height × width) to 2 × 14 × 14.

In addition, in two decoding paths, we used up sam-
plings, convolutions, and skip concatenations to restore 
image details and sizes. The trilinear interpolations and 
convolutions were employed in up sampling. Each level 
had two 3 × 3 × 3 convolutions with a stride of 1 except 
the last layer which only had one 3 × 3 × 3 convolution 
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and one 1 × 1 × 1 convolution. Skip concatenations to 
connect corresponding feature maps from the encoding 
path to the decoding path were utilized to recover the 
lost information during down samplings [34]. In addition 
to connecting the encoder, the decoding path of fluence 
generation also connected the decoding path of dose gen-
eration to propagate the learned dose features at different 
resolution levels. The instance normalization (IN) and 
rectified linear unit (ReLU) activation were followed with 
each 3 × 3 × 3 convolution to prevent over-fitting and gra-
dient explosion.

The output of the dose generation decoding path was 
1 channel and the size was recovered to 32 × 224 × 224. 
However, for the output of fluence generation decod-
ing path, there was a dimension issue between 3D vol-
ume feature space to 2D fluence space. Considering the 
issue, we introduced a 3D to 2D geometric projection 
operation to obtain the fluence map, the projection was 
conducted by a matrix and vector multiplying operation 
as f = PT · v , where f  was the fluence map, v  was the 
feature volume which predicted by the network, T  was 
the transpose operation, and P  was the geometric pro-
jection matrix with its element Pij, thereby indicating 
that the i-th voxel receives fluence contribution from the 
j-th beamlet with unity intensity. Pij was calculated by 
only considering the inverse square effect and PT  was 
stored as a sparse matrix. Hence, the above geometric 

projection operation can be easily inserted into the for-
ward and backward propagation process of the network 
training. The loss function between predictions (includ-
ing dose distribution and fluence map) and ground truth 
was calculated to update the network parameters.

Training and evaluation
Network training
We randomly chose continuous 32 slices with at least 
one slice containing the nonzero value of the PTV mask 
as the input data patch because the number of slices for 
each patient is different and the memory of GPU is lim-
ited. Consequently, one PTV mask patch, seventeen OAR 
mask patches, and one CT image patch were stacked 
to 4D matric with a final size of 19 × 32 × 224 × 224. As 
labeling data, dose distribution patch (32 × 224 × 224) 
and fluence map patch (9 × 32 × 160) at the correspond-
ing position were also extracted. Before training, the 
PTV mask and dose distribution were normalized by 
7000  cGy, the fluence maps were normalized by 2000 
monitor units (MUs), and the values of the CT image 
were first trimmed to the range of -1024–2000 HU and 
then were normalized by 2000 HU. During training, the 
input data of the network was augmented to expand the 
datasets and avoid over-fitting. Herein, two data augmen-
tation ways were used: the whole 32 slices were randomly 
flipped in the left-right direction with a probability of 0.6 

Fig. 1 The architecture of the shared encoder network

 



Page 5 of 12Li et al. Radiation Oncology          (2023) 18:110 

and randomly rotated around the superior-inferior axis at 
one of the degrees at {40°, 80°, 120°, 160°, 200°, 240°, 280°, 
and 320°} with a probability of 0.4, which meant there 
was a probability of (1-0.6) × (1-0.4) = 0.24 that augmen-
tation was not used for a case in a training epoch. The 
dose distribution and fluence maps of the nine beams 
were also transformed based on the augmentation way 
of input data. The validation set was not augmented and 
only slices that contained a nonzero value of the PTV 
mask were used to choose the model achieved the best 
high dose region prediction accuracy.

Moreover, both dose and fluence maps used mean 
square error (MAE) between predicted values and 
ground truth values as a loss function. Dose MAE was 
calculated inside the patient body, and fluence MAE was 
calculated inside the projected PTVs in beams-eye-view 
with 5 mm margin. As to be noted, the edges of fluence 
map patches were not fully covered by the correspond-
ing patient volume patches with the same slices because 
of the divergence of the radiation beam, hence, the pre-
dicted fluence patch at the edge region was not accurate 
after the truncated geometric projection. As such, we 
only calculated fluence loss with the middle part of the 
fluence map patch with a size of 9 × 26 × 160. After the 
model was trained, we used a sliding window fashion 
with some overlap regions to get the full fluence map 
as detailed in the Evaluation section. Finally, we took 
the sum of dose loss and fluence loss as the total loss 
function.

For the setting of hyperparameters, Adam [35] was 
used as an optimizer to minimize the loss function and 
batch size was set to 2. The initial learning rate was set 
to 0.0003, and the ReduceLROnPlateau scheduler was 
employed to reduce the learning rate by 30% when the 
validation loss did not improve after training 4 epochs. 
The network training was completed with Python 3.8 and 
Pytorch 1.10.1 on an NVIDIA RTX Titan GPU with 24 
GB memory. Meanwhile, for the training of the shared 
encoder network, a total of 150 epochs were used and 
there were 400 iterations in each epoch.

Evaluation
A total of 40 independent patient plans were used for 
testing to demonstrate the feasibility of our proposed net-
work in simultaneous dose distribution and fluence maps 
prediction task. Thus, we utilized the sliding window 
method to sample the input data of each patient into sev-
eral patches with a slice stride size of 24 (8 overlap slices) 
to generate the whole 3D dose distribution and fluence 
maps and then feed them into the trained network. The 
corresponding dose and fluence patches were then gener-
ated and collectively combined using a logarithmic func-
tion to smooth the overlap regions. The predicted fluence 
maps were then imported back to Eclipse treatment 

planning system (version 15.6) for MLC leaf motion cal-
culations (Varian LMC 15.6.03) and final dose calcula-
tions (AAA 15.6.03), and then normalized to have the 
same PTV-GTV prescription dose coverage as original 
plan. Fluence map difference, MAE (%), structural simi-
larity index (SSIM) [36], and global gamma passing rates 
with a threshold of 0% and 10% at the criteria of 3%/3mm 
were used to evaluate the predicted fluence maps accu-
racy. The comparison between predicted doses, predicted 
fluence generated doses and ground truth doses was also 
conducted by using dose distribution differences, DVH 
curves, and clinical indices which including the 95% vol-
ume received dose (D95%), mean dose (Dmean) and max 
dose (Dmax) of the structure. Statistical differences were 
evaluated by Wilcoxon signed-rank tests at a 0.05 signifi-
cance level.

Results
As for model training, it took 6 days to train the proposed 
shared encoder network. After the model was trained, 
it took 18 s to generate both doses and fluences for one 
patient.

Fluence evaluation
Figure 2 presents the comparison of fluence maps at nine 
beam angles for a test case. The pixel-level difference 
maps were achieved through subtraction between pre-
dicted fluence and ground truth fluence and then nor-
malized with 2000 HU which closed to the maximum of 
most ground truth fluence maps. The predictions show 
similar fluence modulation and morphological features 
as ground truth, the high-intensity region to irradiate 
tumors and the low-intensity region to spare OARs were 
both recovered in the corresponding place. Yet, the visual 
differences can be also observed particularly in high-
intensity regions.

Meanwhile, Fig. 3 lists the average gamma passing rate, 
MAE, and SSIM for 40 test patients. The average global 
gamma passing rate with criteria of 3%/3mm and thresh-
olds of 0% and 10% were both large than 92%. The MAEs 
were normalized by the maximum value of ground truth 
and showed average values of 0.53% ± 0.13%, which was 
evaluated within the projected PTVs in beams-eye-view 
with 5  mm margin. In addition, the SSIM also showed 
higher values of 0.96 ± 0.02 and further quantified the 
structural similarity of the predicted fluence maps with 
ground truth.

Dose evaluation
Figure 4 shows the comparison of dose distributions and 
differences in three transverse sections and one coronal 
section. The difference maps were obtained by subtract-
ing between predicted doses, predicted fluence gener-
ated doses and ground truth doses voxel by voxel and 
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then normalized by the prescription dose of 7000 cGy. 
Both predicted doses and predicted fluence generated 
doses show high similarity with ground truth doses. The 
comparisons of DVH curves for five PTVs and seventeen 
OARs from the same patient in Fig. 4 were illustrated in 
Fig. 5. The solid lines and dashed lines represent the DVH 
curves of ground truth and predictions respectively. Most 
DVHs from the model predicted doses and model pre-
dicted fluence generated doses show minor differences 

with ground truth (Dmean difference less than 1% of pre-
scription dose), whereas left and right parotids show a 
relatively large difference (Dmean difference large than 
2% of prescription dose), which may be due to a com-
plex dose pattern given that parotids were overlapped 
with high dose PTV-LNs and PTV-2. In addition, PTV-
LN(R) and chiasm from predicted fluence generated dose 
show significantly under-dose and over-dose than ground 

Fig. 3 Quantitative comparison results between ground truth fluence and predicted fluence with (a) MAE, (b) SSIM, (c) global gamma passing rate with 
0% threshold and 10% threshold at 3%3mm criteria, respectively

 

Fig. 2 The fluence maps comparison at all nine beam angles for a test case. (a)(d) are the fluence maps of ground truth, (b)(e) are the predicted fluence 
by shared encoder network, (c)(f) are the fluence difference map between ground truth and prediction normalized by 2000 HU
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truth, while predicted dose only has a minor difference 
with ground truth.

The clinical indices were listed in Table 1 to assess the 
dose coverage of PTVs and the exposure dose of OARs. 
The average differences between predicted dose, pre-
dicted fluence generated dose and ground truth were less 
than 1 Gy for most structures, meanwhile, optic nerves, 
chiasm, and lens show a large dose difference with 
ground truth because of small organ sizes and inadequate 
voxel sampling.

Figure 6 and Fig. 7 further show the box plot compari-
sons of dosimetric results between ground truth doses, 
predicted doses and predicted fluence generated doses 
for five targets and most OARs. Overall, the predicted 
fluence generated dose show a relatively lower target dose 
coverage and higher dose hot spot than ground truth and 
predicted dose. For OARs, no significant differences were 
found between predicted dose and predicted fluence gen-
erated dose.

Discussion
In this study, we proposed a shared encoder network 
for simultaneous 3D dose distribution and fluence maps 
prediction for nasopharyngeal carcinoma patients. The 
proposed network successfully predicted similar dose 
distribution and fluence maps compared with ground 

truth. The predicted fluence maps were further imported 
back into treatment planning system and allowed to gen-
erate a dose distribution close to ground truth. In addi-
tion, patient-specific dose information prediction can 
be used to guide further optimization of plan generated 
from fluence prediction. Once the predicted fluence is 
known as not optimal, further optimization can be con-
tinued by using predicted patient-specific dose informa-
tion as objectives and predicted fluence as initial values.

Studies about 3D dose distribution and fluence map 
prediction were previously done by several groups, and 
they were treated as two separate problems using dif-
ferent inputs and network architectures [19–29, 32, 33]. 
Considering dose distribution and fluence maps are 
highly related, this study took the two tasks in one net-
work. With a minimum extension of 3D U-Net typically 
used for previous dose distribution prediction task, flu-
ence maps can also be simultaneously generated. The 
same inputs (3D contours and CT images) for dose dis-
tribution prediction were also used for fluence map 
prediction, no additional inputs such as field doses or 
pre-calculated 2D feature maps were required.

Currently deliverable plan generation based on solely 
fluence map prediction is still challenging. Any deviation 
of fluence prediction would finally compromise the plan 
quality. Without knowing the achievable patient-specific 

Fig. 4 The dose distribution comparison for a test case. The first three columns are transverse sections and the fourth column is coronal section. Differ-
ence-1: the difference between ground truth dose and predicted dose by shared encoder network. Difference-2: the difference between ground truth 
dose and predicted fluence generated dose normalized by the prescription dose of 7000 cGy
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dose goals, it is difficult to judge whether or not the 
predicted fluence relates to an optimal plan or the pre-
dicted fluence is realistic enough to deliver without sig-
nificant loss of plan quality. As shown in Fig. 6; Table 1 
in this study and several previous studies [24, 27, 29], the 
plan generated by predicted fluence showed a relatively 
low target dose coverage and an increased target dose 
hot spot compared to the ground truth. For these situa-
tions, a further plan improvement step would be needed. 
Thus, the presented study can provide a supplementary 
solution, the simultaneously generated dose distribution 
can be either used to guide the further plan optimiza-
tion. Compared with existing literatures about dose dis-
tribution predictions [20, 33], the presented framework 
achieved similar dose prediction performance and pre-
dicted fluence successfully with only one network.

Although the proposed method showed promis-
ing results in this study, further validations about the 

robustness and accuracy of the model are still required. 
Currently, the model was trained and tested with a data-
set including plans with only uniform nine beams, the 
model performance on other beam configurations for 
nasopharyngeal carcinoma IMRT need to be validated. 
Furthermore, the Eclipse Anisotropic Analytic algorithm 
was used for dose calculation, yet the doses are usually 
calculated with other dose engines, such as Monte Carlo 
or Eclipse Acuros XB. Therefore, the model needs to 
be validated for plans which used a different dose cal-
culation algorithm. In addition, we are also interested 
in integrating the proposed dose distribution and flu-
ence prediction method in an automatic plan generation 
scheme for nasopharyngeal carcinoma IMRT treatment.

Fig. 5 (a) The DVHs comparison between ground truth dose (solid line) and predicted dose by shared encoder network (dashed line). (b) The DVHs 
comparison between ground truth dose (solid line) and predicted fluence generated dose (dashed line)
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Conclusions
We proposed a shared encoder network to predict 3D 
dose distribution and fluence maps simultaneously for 
nasopharyngeal carcinoma IMRT patients. The proposed 
method can be potentially integrated in a fast automatic 
plan generation scheme by using predicted dose as dose 
objectives and predicted fluence as a warm start.

Table 1 The clinical indices comparison for forty test patients with the unit of Gy (mean ± standard deviation). p1: significant 
difference between ground truth and predicted dose by shared encoder network. p2: significant difference between ground truth and 
predicted fluence generated dose. Results with P < 0.05 indicated statistical significance and were labeled with *
Structures Clinical indices 

(Gy)
Ground truth Predicted dose Predicted fluence 

generated dose
p1 p2

PTV-GTV D95% 71.1 ± 0.6 71.2 ± 0.4 70.5 ± 1.1 0.24 0.00*

Dmean 73.4 ± 0.6 73.1 ± 0.4 73.6 ± 0.5 0.06 0.00*

Dmax 76.8 ± 0.8 76.1 ± 0.8 78.0 ± 1.3 0.00* 0.00*

PTV-1 D95% 63.8 ± 1.8 64.5 ± 1.6 63.9 ± 1.5 0.00* 0.13

Dmean 70.2 ± 1.1 70.1 ± 1.1 70.4 ± 1.1 0.38 0.00*

Dmax 76.8 ± 0.9 76.1 ± 0.8 78.0 ± 1.3 0.00* 0.00*

PTV-2 D95% 57.1 ± 1.7 57.6 ± 1.4 56.3 ± 1.6 0.00* 0.00*

Dmean 63.7 ± 2.0 63.6 ± 1.7 63.6 ± 1.9 0.62 0.66

Dmax 76.7 ± 1.2 75.9 ± 1.5 77.8 ± 1.7 0.00* 0.00*

PTV LN(L) D95% 67.6 ± 2.5 66.6 ± 2.2 66.4 ± 2.4 0.00* 0.00*

Dmean 68.9 ± 2.6 68.7 ± 2.2 68.7 ± 2.5 0.40 0.78

Dmax 70.9 ± 3.0 71.4 ± 2.7 71.9 ± 3.2 0.02* 0.00*

PTV LN(R) D95% 67.3 ± 2.8 66.5 ± 2.1 66.1 ± 2.6 0.00* 0.00*

Dmean 68.6 ± 2.9 68.4 ± 2.3 68.2 ± 2.7 0.45 0.17

Dmax 70.3 ± 3.3 70.9 ± 3.0 71.1 ± 3.3 0.01* 0.02*

Spinal cord Dmax 35.5 ± 1.3 36.0 ± 1.6 35.9 ± 2.1 0.02* 0.16

Brainstem Dmax 55.9 ± 5.5 55.1 ± 4.9 55.5 ± 4.9 0.03* 0.17

Left optic nerve Dmax 35.8 ± 21.4 37.5 ± 22.4 37.0 ± 22.3 0.01* 0.24

Right optic nerve Dmax 36.5 ± 21.4 38.0 ± 22.4 37.4 ± 21.7 0.03* 0.09

Chiasm Dmax 43.8 ± 19.6 46.5 ± 19.2 45.5 ± 20.4 0.00* 0.05

Left len Dmax 6.3 ± 2.9 6.7 ± 3.0 6.0 ± 2.6 0.24 0.40

Right len Dmax 6.4 ± 3.3 6.8 ± 3.5 6.2 ± 3.2 0.28 0.95

Left temporal lobe Dmean 18.9 ± 6.9 19.4 ± 6.7 18.7 ± 6.7 0.03* 0.32

Right temporal lobe Dmean 19.5 ± 7.5 19.4 ± 6.6 18.7 ± 6.6 0.51 0.00*

Left mandible Dmean 43.1 ± 6.2 42.7 ± 5.7 42.3 ± 6.0 0.02* 0.00*

Right mandible Dmean 42.2 ± 4.7 42.1 ± 4.2 41.6 ± 4.7 0.93 0.00*

Left parotid gland Dmean 38.4 ± 4.4 38.7 ± 4.8 38.5 ± 5.0 0.29 0.96

Right parotid gland Dmean 38.5 ± 3.9 39.0 ± 4.0 38.6 ± 4.4 0.08 0.96

Body Dmean 19.0 ± 4.0 20.2 ± 2.9 18.7 ± 4.0 0.01* 0.00*

Tongue Dmean 43.0 ± 4.3 42.8 ± 3.9 42.5 ± 4.4 0.67 0.02*

Left temporo-mandibular 
joint

Dmean 43.6 ± 8.7 43.7 ± 8.1 43.3 ± 8.7 0.97 0.05

Right temporo-mandibu-
lar joint

Dmean 42.9 ± 9.5 42.9 ± 8.9 42.2 ± 9.5 0.91 0.00*
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Fig. 6 Box plot comparisons of dosimetric results between ground truth doses, predicted doses (dose_pre) and predicted fluence generated doses 
(dose_flu) for five targets
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IMRT  Intensity-modulated radiation therapy
MLC  Multi-leaf collimator
TPS  Treatment planning system
KBP  Knowledge-based planning
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PTV  Planning target volume
OAR  Organ at risk
MAE  Mean absolute error
SSIM  Structural similarity index

Fig. 7 Box plot comparisons of dosimetric results between ground truth doses, predicted doses (dose_pre) and predicted fluence generated doses 
(dose_flu) for fifteen OARs
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