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Abstract 

Background: This study aimed to (1) develop a fully residual deep convolutional neural network (CNN)-based seg-
mentation software for computed tomography image segmentation of the male pelvic region and (2) demonstrate its 
efficiency in the male pelvic region.

Methods: A total of 470 prostate cancer patients who had undergone intensity-modulated radiotherapy or volumet-
ric-modulated arc therapy were enrolled. Our model was based on FusionNet, a fully residual deep CNN developed to 
semantically segment biological images. To develop the CNN-based segmentation software, 450 patients were ran-
domly selected and separated into the training, validation and testing groups (270, 90, and 90 patients, respectively). 
In Experiment 1, to determine the optimal model, we first assessed the segmentation accuracy according to the size 
of the training dataset (90, 180, and 270 patients). In Experiment 2, the effect of varying the number of training labels 
on segmentation accuracy was evaluated. After determining the optimal model, in Experiment 3, the developed 
software was used on the remaining 20 datasets to assess the segmentation accuracy. The volumetric dice similarity 
coefficient (DSC) and the 95th-percentile Hausdorff distance (95%HD) were calculated to evaluate the segmentation 
accuracy for each organ in Experiment 3.

Results: In Experiment 1, the median DSC for the prostate were 0.61 for dataset 1 (90 patients), 0.86 for dataset 2 (180 
patients), and 0.86 for dataset 3 (270 patients), respectively. The median DSCs for all the organs increased significantly 
when the number of training cases increased from 90 to 180 but did not improve upon further increase from 180 to 
270. The number of labels applied during training had a little effect on the DSCs in Experiment 2. The optimal model 
was built by 270 patients and four organs. In Experiment 3, the median of the DSC and the 95%HD values were 0.82 
and 3.23 mm for prostate; 0.71 and 3.82 mm for seminal vesicles; 0.89 and 2.65 mm for the rectum; 0.95 and 4.18 mm 
for the bladder, respectively.

Conclusions: We have developed a CNN-based segmentation software for the male pelvic region and demonstrated 
that the CNN-based segmentation software is efficient for the male pelvic region.
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Introduction
High-precision radiotherapy, including intensity-mod-
ulated radiotherapy (IMRT) and volumetric-modulated 
radiotherapy (VMAT) comprise five steps: computed 
tomography (CT) simulation, segmentation, treatment 
planning, patient-specific quality assurance, and treat-
ment. Among these, segmentation is time-consuming 
and associated with inter-observer variations [1]. Auto-
segmentation methods are preferred for workload allevi-
ation. Atlas-based segmentation methods have been used 
in clinical practice [2–4]. An atlas is a library of organs-
at-risk derived by manual segmentation, and the data are 
extrapolated to new patients via image registration [2]. 
This reduces the physician segmentation time by 30–40% 
as well as inter-observer variation [3]; however, because 
the method is sensitive to atlas selection and strongly 
dependent on registration accuracy, it is difficult to gen-
eralize the data [4]. Therefore, a next-generation auto-
segmentation method is required.

Recently, deep learning methods have been used to 
identify objects in images [5, 6]. Deep learning auto-
segmentation algorithms have rapidly become state-
of-the-art in terms of medical image segmentation [6]. 
Convolutional neural networks (CNNs) are learning 
methods featuring multiple levels of representation. 
Units in a convolutional layer are organized into fea-
ture maps, within which each unit is connected to local 
patches of the feature maps of the previous layer via a 
set of weights. Auto-segmentation using CNNs featuring 
deep architectures improved segmentation accuracy and 
decreased the segmentation time compared to the atlas-
based method [7, 8].

Generally, high-quality performance is obtained using 
a larger number of data for the CNN-based model. In 
the male pelvic region, the auto-segmentation accuracy 
was slightly improved when a large dataset was used to 
create a model to perform the auto-segmentation via 
the CNN [9–14]; nevertheless, the effect of the size of 
the dataset on the segmentation accuracy has not been 
explored. In addition, practically, multi-labeling of medi-
cal images prior to segmentation is a major problem. Real 
images exhibit many individual anatomical intricacies 
caused by variations in organ shapes and sizes. Moreo-
ver, organs evident on the CT images of the male pelvic 
region contrast poorly, and the surrounding boundaries 
of the prostate, seminal vesicles, rectum, and bladder 
may not be clearly visible. Multi-labeling has been used 
for segmentation in many contexts; therefore, a unique 

network has been developed to solve the problem [15–
17]. We hypothesized that annotation differences such as 
changing the number of labels, would affect the segmen-
tation accuracy. Whether varying the number of labels 
for training improves segmentation accuracy has not yet 
been investigated.

Furthermore, auto-segmentation has great real-world 
clinical potential with the possibility of reducing time 
consumption [18]. Despite the number of published stud-
ies in this area, it is difficult to generalize these outcomes 
because it can only be used with dedicated treatment 
planning support systems [19–25]. Therefore, in this 
study, we develop and evaluate the accuracy of a software 
that can be used on the commercial radiation treatment 
planning system (RTPS).

This study aimed to: (1) develop a fully residual deep 
CNN-based segmentation software for the male pelvic 
region and (2) demonstrate its efficiency in prostate can-
cer patients.

Materials and methods
Patient data
We enrolled 470 prostate cancer patients who had under-
gone IMRT or VMAT in the prone position at our insti-
tution between July 2007 and August 2015 in our study. 
CT images were acquired using a matrix of 512 × 512 and 
a 2.5 mm slice thickness (voxel size, 0.97 × 0.97 × 2.5 mm) 
on the LightSpeed RT platform (GE Healthcare, Lit-
tle Chalfont, UK). Region of interest (ROIs) of the 
prostate, seminal vesicles, rectum, and bladder were 
manually delineated by experienced radiation oncologists 
and medical physicists. The rectal ROI ran from 15 mm 
below the apex of the prostate to 15 mm above the tips 
of the seminal vesicles. Patients who underwent femo-
ral head replacement were not included. The study was 
approved by our institutional review board and adhered 
to all relevant ethical tenets of the Helsinki Declaration 
(R1499).

Model architecture and implementation
Our model was based on FusionNet [26], a fully resid-
ual deep CNN developed to semantically segment 
biological images. The FusionNet architecture fea-
tures many ReLU convolution layers, including down-
sampling and up-sampling layers. In the model, a 
512 × 512 input is gradually transformed into a 32 × 32 
representation and finally expanded to a probability 
map of the same size as the input. All the trainings and 

Keywords: Computed tomography, Fully residual deep convolutional neural network, Segmentation accuracy, Male 
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predictions were performed using the Intel Core Xeon 
CPU, single NVIDIA Tesla V100 GPU, and 244  GB 
RAM in the Python 3.6 environment. Our model was 
written in Keras featuring a TensorFlow backbone. 
During the training, we determined all model hyper-
parameters experimentally. We used unbalanced 
weights for all the labels and set them by referencing 
the total inverse area of each label. The model was 
trained using a mini-batch approach (size: 28) and the 
Adam algorithm. The learning rate was set to 0.001 to 
allow optimization.

Experiments
The overall strategy in this study is shown in Fig.  1. To 
determine an optimal segmentation model, we first cal-
culated the volumetric dice similarity coefficient (DSC) 
when the training dataset changed and then explored 
various learning strategies in Experiments 1 and 2, 
respectively. In Experiments 1 and 2, the 450 patients 
and the corresponding structural images were randomly 
separated into the training (270 patients; 60%), validation 
(90 patients; 20%), and testing (90 patients; 20%) data-
sets. To build robust models using a limited dataset, we 
randomly augmented all images via rotation (± 15°) and 
shearing (± 0.1 radians) during the training. The model 

Fig. 1 Overall strategy of the study. Experiments 1 and 2 evaluated the effects of dataset size and label number, respectively, on segmentation 
accuracy to determine the optimal model. Thereafter, Experiment 3 was performed to evaluate the segmentation accuracy in 20 additional prostate 
cancer patients
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was validated using the DSC of the validation dataset and 
set the upper limit of the training iteration to 100 epochs. 
The details of Experiments 1 and 2 are described in the 
subsequent sections.

Based on the results obtained in Experiments 1 and 2, 
we developed a CNN-based segmentation software. In 
Experiment 3, the segmentation accuracy was then eval-
uated in 20 additional prostate cancer patients using the 
developed software.

Experiment 1: segmentation accuracy with datasets 
of different sizes
We first investigated the effect of dataset size on segmen-
tation accuracy. We divided the 270 patients in the train-
ing dataset into three subgroups: dataset 1 (90 patients), 
dataset 2 (180 patients), and dataset 3 (270 patients). 
After training using each dataset, testing was performed 
using independent datasets (90 patients), and DSC was 
calculated to evaluate the optimal model. Statistical 
analysis was performed using Bonferroni correction to 
appraise the DSC among different datasets. The level of 
significance was set to less than 0.05.

Experiment 2: segmentation accuracy with varying 
number of labels
Subsequently, we evaluated the segmentation accuracy 
using a varying number of the training labels. The num-
ber of patients for the training was 270. Here, we used 
four different ROI datasets: dataset 1 with one ROI (e.g., 
the prostate only), dataset 2 with two ROIs (e.g., the 
prostate and rectum), dataset 3 with three ROIs (e.g., 
the prostate, rectum, and bladder), and dataset 4 with 
all ROIs (the prostate, seminal vesicles, rectum, and 
bladder). Dataset 1 was regarded as a single-label task 
whereas datasets 2–4 were viewed as multi-label tasks. 
The output structures of all the training sets were the 
prostate, seminal vesicles, bladder, and rectum. After the 
training, testing was performed using independent data-
sets (90 patients), and the DSC was calculated to evalu-
ate the optimal model. Statistical analysis was performed 
using Bonferroni correction to appraise the DSC among 
different datasets. The level of significance was set to less 
than 0.05.

Experiment 3: segmentation accuracy in clinical practice
We developed an auto-segmentation model in Python 
and included a graphical user interface to create a stand-
alone product that can run on any workstation. The seg-
mented structures were converted to DICOM-RT files 
prior to their importation into an Eclipse RTPS (ver-
sion 15.6; Varian Medical Systems Inc., Palo Alto, CA). 
The operation flow of the software includes (1) select-
ing a patient, (2) detecting the region of each organ, (3) 

confirming the outcome, and (4) exporting in DICOM-
RT files. The volumetric DSC and the 95th-percentile 
Hausdorff distance (95%HD) between the predicted and 
manual segmentation were calculated to assess the per-
formance of the segment accuracy.

Results
Computation time
The time required to create a model was 10  h, and the 
average and maximum complete segmentation time was 
0.12 s per slice and 0.20 s per slice, respectively. The com-
puter used in this study had an Intel Core Xeon CPU, sin-
gle NVIDIA Quadro P600 GPU, and 32 GB RAM.

Experiment 1: segmentation accuracy using datasets 
of different sizes
Figure 2 shows the DSCs of the training datasets as the 
number of the training data increased. The DSCs are 
reported only for the testing datasets. The median (inter-
quartile range) DSCs for dataset 3 (270 patients) were 
0.86 (0.85–0.89), 0.76 (0.71–0.81), 0.90 (0.87–0.91), and 
0.96 (0.95–0.97) for the prostate, seminal vesicles, rec-
tum, and bladder, respectively. For the segmentation 
accuracy of the prostate, the median DSC were 0.61 for 
dataset 1 (90 patients), 0.86 for dataset 2 (180 patients), 
and 0.86 for dataset 3 (270 patients), respectively. The 
median DSC for each ROI increased significantly as 
the number of training data increased from 90 to 180 
(p < 0.05). When additional 90 cases were considered, the 
median DSCs became slightly higher (approximately 0.02 
points for all ROIs); nonetheless, the differences were 
insignificant. The predicted segmentation of a represent-
ative patient is shown in Fig.  3. All the ROIs evidenced 
acceptable segmentation accuracy.

Experiment 2: segmentation accuracy with a varying 
number of training labels
The DSCs obtained with a varying number of labels are 
shown in Fig. 4. The median (interquartile range) DSCs 
for the prostate, seminal vesicles, rectum, and blad-
der for all the training methods were 0.87 (0.84–0.89), 
0.77 (0.69–0.82), 0.90 (0.87–0.92), and 0.96 (0.94–0.97), 
respectively. No significant differences were observed 
when one-, two-, three-, and four-ROIs training data-
sets were used. All the DSC quartile variations were < 5% 
regardless of the training method employed. Further-
more, the DSC distributions were similar for all the mod-
els; therefore, the segmentation did not depend on the 
type of training model used or the labeling.

Experiment 3: segmentation accuracy in clinical practice
Based on the results in Experiments 1 and 2, the predic-
tion model with 270 patients and four ROIs were used as 
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optimal models to assess the segmentation accuracy. The 
median (interquartile range) DSC values for the prostate, 
seminal vesicles, rectum, and bladder were 0.82 (0.79–
0.84), 0.71 (0.67–0.77), 0.89 (0.86–0.91) and 0.95 (0.94–
0.96), respectively. The median (interquartile range) of 
95%HD value was shown in 3.23  mm (2.99–3.42  mm) 
for the prostate, 3.82 mm (3.49–4.29 mm) for the semi-
nal vesicle, 2.65 mm (2.39–2.92 mm) for the rectum, and 
4.18 mm (3.52–4.77 mm) for the bladder, respectively.

Discussion
The auto-segmentation of the prostate and surrounding 
ROIs effectively reduced inter-observer variation and the 
time required for the segmentation prior to radiother-
apy [8–14]. Empirically, this is the first study develop-
ing a fully residual deep CNN-based auto-segmentation 
method for Asians by implementing in-house software. 
This can be used on the commercial RTPS in clinical 
practice to assess the auto-segmentation accuracy in the 
male pelvic region.

As expected, the segmentation accuracy improved 
significantly when the training image datasets from 
180 (rather than 90) patients were used. The DSCs of 
all the ROIs created using the CT data on 180 patients 
were comparable to those of previous reports [9–14]. 
The segmentation accuracies obtained by using data 
from 270 (rather than 180) patients for training did not 
improve slightly. There are three possible explanations. 
First, the anatomical features of the 270 patients were 
similar to those of the 180 patients. Second, the man-
ual delineation errors do not increase the DSC. Third, 

a fully residual deep CNN is not perfect in terms of 
segmentation, and the accuracy varies by organ shape 
and size. Regarding the seminal vesicle segmentation, 
the DSCs improved as the training datasets increased 
in size; however, the values remained low because of 
the complex shape and small size of this ROI com-
pared with other ROIs. This indicates that the seminal 
vesicle segmentation must be carefully modified in the 
future. A small (approximately 180 patients) prospec-
tively labeled training dataset (which will be available in 
many institutions) will enable a high-performance seg-
mentation; nevertheless, carefully segmented ROIs are 
required for evaluation.

We conclude that the segmentation accuracy is not 
affected by the number of labels used, as shown in Fig. 4. 
Multi-labeling affects the weights required to recognize 
the labels employed to segment organs during training. 
Additionally, weights vary when low-contrast images (for 
example, a smeared border between ROIs) are used for 
training, affecting segmentation accuracy. Therefore, we 
hypothesized that the segmentation accuracy revealed 
by the DSC would decrease on multi-labeling. However, 
the segmentation accuracy demonstrated by FusionNet 
did not change. During the fully residual deep CNN auto-
segmentation, it was essential to minimize the variance 
between the training and testing datasets, and the ana-
tomical features of our two datasets were similar. More-
over, we established an institutional policy for manual 
segmentation. This shows that the outputs of multi-label 
learning of the four ROIs are comparable to those of the 
single-label task.

Fig. 2 Boxplot of dice similarity coefficients with increasing dataset size. The horizontal axis shows the dataset size for each ROI
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Fig. 3 Examples of segmentation of the a sagittal and b multiple axial planes when building a model using data from 270 patients. The blue, 
yellow, green, and brown contours are the predicted boundaries of the bladder, prostate, seminal vesicles, and rectum, respectively. The others are 
the ground truth boundaries identified by the CNN and human experts, respectively
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Fig. 4 Boxplot of the dice similarity coefficients of the testing dataset using different training methods: models trained using a one ROI, b two ROIs, 
and c three ROIs. P, B, R, and S on the horizontal axis denote the prostate, bladder, rectum, and seminal vesicles, respectively
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Sollini et  al. asserted that though the results of stud-
ies with artificial intelligence were promising, they were 
still inadequate in clinical settings [18]. Consequently, 
deliverables with artificial intelligence will be needed for 
accuracy in “real world [18]”. Currently, auto-segmenta-
tion including a CNN method was implemented in some 
commercial treatment planning support systems [19–
24]. DLCExpert™ (Mirada Medical Ltd., UK), Ethos ther-
apy system (Varian Medical Systems, Palo Alto, CA), and 
Limbus Contour (Limbus AI Inc., Regina, Canada) have 
the function of auto-segmentation using modified U-nets 
such as semantic segmentation [25] and BibNet [27]. 
The performance of this software is clinically accept-
able, including segmentation accuracy and calculation 
time [19–24]. Nevertheless, these systems employ down 
and up sampling from original image resolution to pre-
vent out-of-memory. To conduct down and up sampling, 
interpolation algorithm of both non-extra and extra pixel 
interpolation categories is generally performed. Auto-
segmentation of small organs such as the seminal vesicle 
is difficult because of the low contrast on the pelvic CT 
images when interpolation is conducted. Thus, poor per-
formance at low resolution is likely associated with loss 
of information within the image [28, 29]. Our method 
does not use down and up sampling before training the 
model; therefore, it is possible to conduct auto-segmen-
tation while keeping the original image resolution.

Table 1 summarizes the methodology of auto-segmen-
tation using deep learning reported by other studies and 
our study. Segmentation accuracy in our study shows 
comparable results in all the ROIs reported by other 
studies using deep learning technique [9–14, 19, 20, 24]. 
The accuracy of the segmentation even in a small organ 
such as the seminal vesicle was higher than that of other 
studies owing to the high input resolution images. This 
is one of the advantages compared to other reports; sus-
taining the segmentation accuracy and calculation time 
with the original image information.

The present study has several limitations, which war-
rant a discussion. Our model is applicable to patients in 
the prone position and not to those undergoing femoral 
head replacement. In addition, our model cannot seg-
ment the small or large bowels. Another kind of deep 
learning network, such as an unsupervised learning net-
work, would enhance the performance of our model.

Conclusion
We found that the segmentation accuracy was improved 
as the number of training images increased; nonethe-
less, the augmented data of more than 180 patients had 
a little gain on the segmentation accuracy. In addition, 
the number of labels employed was irrelevant. We also 
demonstrated the efficiency of the fully residual deep 

CNN-based segmentation model for additional prostate 
cancer patients.
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