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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence.
Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure.
In this review, we present the current status and the recent advances in PDAC treatment together with the
biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining
distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome – with a specific focus
on protocols involving radio(chemo)therapeutic approaches.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most
prevalent neoplastic disease of the pancreas accounting
for more than 90% of all pancreatic malignancies [1]. To
date, PDAC is the fourth most frequent cause of cancer-
related deaths worldwide with a 5-year overall survival
of less than 8% [2]. The incidence of PDAC is expected
to rise further in the future, and projections indicate a
more than two-fold increase in the number of cases
within the next ten years, both in terms of new diagno-
ses as well as in terms of PDAC-related deaths in the
U.S. as well as in European countries ([3, 4], www.can-
cerresearchuk.org/health-professional/cancer-statistics/
statistics-by-cancer-type/pancreatic-cancer#heading-
Zero). A particular reason for this – apart from the gen-
eral aging of our society – is the evident implication of
obesity and type 2 diabetes, two emerging public health
challenges, in PDAC etiology [5–7]. Life style habits, in-
cluding alcohol and tobacco abuse, which are well-
known to increase the risk for several other types of

cancer, such as lung cancer and squamous cell carcin-
omas of the head and neck region [8–10], also appear to
be involved in PDAC development [11–15]. Finally, for a
subgroup of approximately 5-6% of all PDAC patients,
genetic predispositions, such as germline mutations in
the genes BRCA1/2, ATM, MLH1, TP53, or CDKN2A,
represent further risk factors [16–18].

Current treatment standards and recent advances in
PDAC chemo- and/or radiotherapy
Efficacy and outcome of PDAC treatment are largely de-
termined by the stage of disease at the time of diagnosis.
Surgical resection followed by adjuvant chemotherapy is
the only possibly curative therapy available, yet only 10-
20% of PDAC patients present with resectable PDAC
stages, while the residual 80-90% show locally advanced,
non-resectable stages or – in the majority – distant metas-
tases [19, 20]. Systemic chemotherapy is commonly
employed as first-line treatment in patients with non-
resectable or borderline-resectable tumors. This encom-
passes nucleoside analogues, including gemcitabine and
capecitabine, or the pyrimidine analogue 5-fluorouracil (5-
FU) in monotherapy settings or in combination with other
treatment modalities, such as radiotherapy, respectively
[20–22]. FOLFIRINOX, a poly-chemotherapeutic regimen

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: kirsten.lauber@med.uni-muenchen.de
†Michael Orth and Philipp Metzger these authors share equal first authorship
1Department of Radiation Oncology, University Hospital, LMU Munich,
Munich, Germany
2German Cancer Consortium (DKTK), LMU Munich, 81377 Munich, Germany
Full list of author information is available at the end of the article

Orth et al. Radiation Oncology          (2019) 14:141 
https://doi.org/10.1186/s13014-019-1345-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-019-1345-6&domain=pdf
http://orcid.org/0000-0002-8141-0452
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer#heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer#heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer#heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer#heading-Zero
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kirsten.lauber@med.uni-muenchen.de


composed of folinic acid, 5-FU, irinotecan, and oxaliplatin,
has been reported to nearly double median survival in the
metastasized stage as compared to gemcitabine alone [23],
and the combination of gemcitabine and a nanoparticle
albumin-bound paclitaxel (nab-paclitaxel) has also been
shown to significantly improve overall survival [24]. How-
ever, these protocols are associated with relevantly higher
toxicity, thus often preventing their application in elderly
patients and/or patients with poor performance status,
but overall quality of life was reported to increase [25].
Radio(chemo)therapy has been rather infrequently

adopted for the treatment of PDAC, since the majority
of patients suffer from disseminated stages in which
local treatment procedures are of secondary importance
[26]. Nevertheless, neoadjuvant radiotherapy has the po-
tential to improve PDAC resectability in locally advanced
or primarily inoperable/borderline-operable patients, and
its beneficial effects on local tumor control are well docu-
mented [27, 28]. Compared to other cancer entities,
PDAC tumors exhibit a rather high degree of radioresis-
tance – a characteristic which is currently addressed by
combining PDAC radiotherapy with radiosensitizing
agents, including gemcitabine, capecitabine, or 5-FU, re-
spectively [28, 29]. According to the guidelines of the
National Comprehensive Cancer Network (NCCN), the
use of radio(chemo)therapy is recommended for PDAC
patients with borderline-resectable tumors, and several
regimens involving capecitabine, gemcitabine, or 5-FU
have been clinically implemented [29, 30]. The advances
of modern external beam radiation techniques, including
image-guided radiation therapy (IGRT), stereotactic body
radiation therapy (SBRT), and ablative radiation therapy,
as well as the combination with novel chemotherapeutic
protocols have clearly widened the spectrum of radio-
therapeutic options [27, 31, 32].
Expecting increased toxicities when combining more

aggressive treatment approaches, sequential application
is currently being evaluated in the randomized phase III
CONKO-007 trial for PDAC patients with borderline-
resectable, non-metastatic disease (NCT01827553). Pre-
liminary results from an interims analysis document a
promising outcome with higher rates of resectability, con-
firming previous phase II findings [27, 30, 33]. As the per-
formance of systemic therapies gradually improves, local
tumor control moves back into the focus of interest, both
with respect to symptom control as well as with respect to
quality of life. In consequence, the importance of local
radiotherapy for the treatment of PDAC patients is con-
stantly growing. SBRT is a highly conformal radiation
technique which is employed to deliver high doses in a
small number of fractions. Due to its steep dose gradients
around the target volume, SBRT efficiently spares adjacent
organs at risk resulting in relevantly lower toxicity. In sev-
eral studies, SBRT achieved significant improvements in

pain control paralleled by increased local tumor control
[34]. Hence, SBRT can be seen as an effective and safe
therapeutic option, and its use in multimodality treatment
concepts and/or in palliative settings is considered more
and more frequently.
In several other cancer entities, e.g. in melanoma

and lung cancer, the implementation of immunothera-
peutic approaches, specifically immune checkpoint in-
hibition, has proven compelling success [35–38]. Yet,
at least so far, treatment efficacy in PDAC has been
rather limited [35, 39], and checkpoint inhibition has
only received approval for the small subset of PDAC
tumors with high microsatellite instability (1-2% of all
cases) [40, 41]. This may be due to the strongly im-
munosuppressive, desmoplastic PDAC microenviron-
ment, the relatively low mutational burden (resulting
in a low number of neo-antigens), as well as other
biological and/or immunological hallmarks of PDAC
which are discussed in this review [42].

Biological and immunological hallmarks of PDAC
Tumor plasticity and heterogeneity
The pancreas contains cells of exocrine (acinar), epithelial
(ductal), and endocrine (α, β, δ, ε) origin among which aci-
nar cells are well known for their high degree of plasticity.
This plasticity is considered to drive pancreas homeostasis
and regeneration, as – in contrast to other organs of the
gastrointestinal tract – the pancreas seems to lack a
defined stem cell compartment [43]. In a process called
acinar-to-ductal metaplasia (ADM), acinar cells transdif-
ferentiate to more epithelial (ductal-like) phenotypes when
experiencing certain macro- and microenvironmental
stimuli, e.g. tissue damage, inflammatory, or stress condi-
tions [44, 45]. During ADM, acinar cells acquire ‘progeni-
tor cell-like’ characteristics which render them more
susceptible to pro-oncogenic hits, such as activating muta-
tions in the proto-oncogene KRAS, eventually transform-
ing them into pancreatic intra-epithelial neoplasias
(PanINs). This transformation is generally considered as
the initial step in PDAC development followed by sequen-
tial progression involving genetic hits in several tumor
suppressor genes [46] (Fig. 1).
In order to examine the mutational and transcriptional

landscape of PDAC, a number of next generation se-
quencing approaches were initiated in the last years
[48–51]. In conjunction, these studies showed that the
gene encoding the proto-oncogenic GTPase KRAS as
well as several tumor suppressor genes, including tumor
suppressor protein 53 (TP53), cyclin-dependent kinase in-
hibitor 2A (CDKN2A), and mothers against decapenta-
plegic homologue 4 (SMAD4), exhibit the most frequent
alterations and/or mutations in PDAC [49]. For instance,
KRAS was not only found to be mutated in most PDAC
tumors (> 90%), its mutant alleles were additionally
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amplified in a subgroup of samples, resulting in accel-
eration of their tumor-promoting potential [52]. Fur-
thermore, RAC-beta serine/threonine-protein kinase
(AKT2) is frequently overexpressed, and the activity
of its upstream regulator phosphoinositide 3-kinase
(PI3K) is often elevated in PDAC leading to increased
tumor cell survival [53, 54]. Apart from these key
mutations, several more uncommon alterations, such
as germline mutations in DNA damage repair genes
(e.g. breast cancer early onset genes 1/2 (BRCA1/2),
partner and localizer of BRCA2 (PALB2), and ataxia
telangiectasia mutated protein serine/threonine kinase
ATM), or somatic mutations in DNA mismatch repair
regulator genes leading to increased microsatellite in-
stability have been found in certain subsets of pa-
tients [55]. Of note, the transcriptomic landscape of
PDAC is not entirely governed by genetic alterations.
Integrated epigenetic regulatory circuits comprising chro-
matin-based mechanisms, such as DNA methylation and
histone post-translational modification, as well as regula-
tion by non-coding RNAs are also largely distorted in
PDAC. In this regard, key tumor suppressor genes have
been described to be repressed, and oncogenes upregu-
lated due to epigenetic alterations [56]. Furthermore, epi-
genetic (re-)programing is fundamentally linked to tumor
progression and metastasis formation [57, 58], and the
epigenetic landscapes of human PDAC subtypes differ
substantially [59].

PDAC is a highly heterogenic disease, and various
attempts have been undertaken to define distinct
subtypes with the aim of stratifying patients towards
personalized treatment strategies [49, 50, 60–62]. Cur-
rently available transcriptome-based classifications were
extracted via unsupervised clustering methods and dif-
fer in the numbers of subtypes identified. Nevertheless,
all share common subtypes, including a classical/ca-
nonical subtype hallmarked by epithelial-like gene ex-
pression, and a quasi-mesenchymal/basal-like subtype
characterized by a more mesenchymal gene expression
pattern and poorer prognosis (Fig. 2). These subtypes
meanwhile can be stratified by immunohistochemistry
using hepatocyte nuclear factor 1A (HNF1A) and cyto-
keratin-81 (KRT81) as markers [64]. Furthermore, sub-
types related to exocrine pancreas function have been
described as well as subtypes with expression signatures
of immune cell-related genes [50, 61, 62]. Although to
date there is still no consensus classification which
would be the prerequisite for clinical application, retro-
spective as well as prospective analyses have shown that
subtype-based stratification has the potential for gen-
omics-driven precision medicine [64, 65]. The PDAC
subtypes obviously stem from inter-tumoral heterogen-
eity. Yet, intra-tumoral heterogeneity needs to be con-
sidered as well, and tumor cell plasticity might render
these classifications dynamic, especially upon thera-
peutic intervention.

Fig. 1 Multi-step PDAC carcinogenesis. Modified from [47].
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Desmoplastic, hypoxic, immunosuppressive
microenvironment
A crucial hallmark of PDAC is the existence of extensive
desmoplastic stroma which can constitute up to 90% of
the tumor volume and is commonly considered to origin-
ate from cancer-associated fibroblasts (CAFs) [42] (Fig. 3).
Distinct subtypes of CAFs with either myofibroblastic or
inflammatory phenotypes have been identified [67, 68],
and the major source of CAFs appear to be pancreatic
stellate cells which upon activation, e.g. by injury or
chronic inflammation, start depositing huge amounts of

extra cellular matrix, including laminins, fibronectins, col-
lagens, and hyaluronan [69–72]. Interestingly, expression
of focal adhesion kinase 1 (FAK1) in PDAC cells has re-
cently been reported to be decisive for this process as
pharmacological targeting of FAK1 interfered with the for-
mation of desmoplasia, thus offering a potential target for
therapeutic intervention [73]. Hypoxia is another key fea-
ture of the PDAC microenvironment, and it is closely
interlinked with desmoplasia. It originates from desmopla-
sia-associated hypovascularization and vice versa favors
desmoplastic progression by activating pancreatic stellate

Fig. 2 Molecular classifications of PDAC. Modified from [63].

Fig. 3 PDAC desmoplasia. Modified from [66].
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cells [74–76]. PDAC hypoxia and desmoplasia, which are
observed in clinical samples as well as in genetically engi-
neered mouse models, seem to represent barriers to T cell
infiltration – intriguingly both for effector as well as regula-
tory T cells – and T cell activation [77–79]. Moreover, hyp-
oxia and desmoplasia are accompanied by a strong
accumulation of myeloid cells [80, 81]. Macrophages that
are recruited adopt an immunosuppressive, pro-angiogenic
M2-like state, block CD4+ T cell entry into the PDAC
microenvironment, support PDAC progression, and thus
are a marker of negative clinical prognosis [76, 82, 83]. Sys-
temic frequencies of monocytes and granulocytes are ele-
vated in PDAC patients, and due to their pathological
activation and immunosuppressive function they are classi-
fied as monocytic or polymorphonuclear myeloid-derived
suppressor cells (MDSCs), respectively. Both populations
are potent suppressors of T cell function and inhibit anti-
tumor immune responses [84, 85]. Recently, the CXCL-1/
CXCR2-axis has been shown to be crucially involved in
intra-tumoral recruitment of MDSCs, suppressing CD8+ T
cell infiltration and function as well as compromising re-
sponsiveness to immunotherapy [86]. Apart from these in-
nate immune cell subpopulations, immunosuppressive T
and B cell subpopulations, including regulatory T cells, γδ
T cells, and regulatory B cells, have been described in the
PDAC microenvironment. They do not only block activa-
tion but also infiltration of effector T cells resulting in low
intra-tumoral CD8+ T cell frequencies [87–89]. These ef-
fector T cells appear to be antigen-experienced, but tumor
antigen recognition and/or T cell activation seem to be dis-
turbed [90]. However, the intra-tumoral T cell repertoire
shows enrichment in distinct T cell receptors, suggesting
that in principle PDAC tumors are sites of local T cell ex-
pansion [91].
On the cytokine level, the PDAC microenvironment

represents a comparable degree of complexity. Neverthe-
less, the dominating cytokines seem to be transforming
growth factor beta (TGF-β), interleukin (IL-) 6, IL-8, IL-
10, IL-35, granulocyte macrophage colony-stimulating
factor (GM-CSF), CC-chemokine ligand 2 (CCL-2), CXC-
chemokine ligand 1 (CXCL-1), and CXCL-13. In complex
networks they orchestrate the recruitment and education
of innate and adaptive immune cells as well as their
crosstalk with tumor cells, CAFs, and other cells in the
PDAC microenvironment, culminating in the desmo-
plastic, immunosuppressive milieu that has been de-
scribed above [92–94].

Metastasis formation
Another feature of PDAC is its early progression to
metastatic disease [1]. In advanced stages, patients show
invasion of the (retro)peritoneum, the liver, and other
gastrointestinal organs, as well as – in some cases – the
vascular and/or the nervous system [95]. The key drivers

of PDAC metastasis formation are still poorly under-
stood, especially since the genetic composition of most
metastases is closely resembling the one of the corre-
sponding primary tumors [96–98]. Nevertheless, metas-
tasis formation appears to be a clonal process, since
primary PDAC tumors are composed of different sub-
clones with individual metastatic potential, and most of
the metastases show high levels of clonality, indicating
that they initially evolved from one or only a few dissem-
inated tumor cells [96, 98]. Mechanistic studies with
genetically traceable mouse models identified a crucial in-
volvement of epithelial-to-mesenchymal transition (EMT)
explaining also why the quasi-mesenchymal PDAC sub-
type as characterized by stronger expression of mesenchy-
mal genes may be associated with poorer prognosis due to
accelerated metastasis formation [61, 62, 99] (Fig. 4). EMT
so far has been considered to be orchestrated by a com-
plex network of transcription factors which repress epithe-
lial gene expression and/or induce mesenchymal gene
expression, including twist-related protein 1 and 2
(TWIST1/2), snail family zinc finger protein SNAI1 and 2
(SNAI1/2), zinc finger E-box-binding homeobox 1 and 2
(ZEB1/2), and paired mesoderm homeobox protein 1
(PRRX1a/b) [100, 101]. Especially the EMTactivator ZEB1
has been assigned a central role for tumor cell plasticity
and metastasis formation in murine PDAC models [102].
miRNAs, particularly miR-10, miR-21 and members of the
miR-200 family, constitute another regulatory level of
EMT and are closely interlinked with the EMT transcrip-
tion factors via diverse feedback and feedforward circuits
[103, 104]. Recently, a novel, partial program of EMT
has been described which is driven by post-transla-
tional internalization of epithelial proteins resulting in
cluster-like rather than single-cell dissemination [105].
Several parameters of the tumor micro- and macroen-

vironment are known to influence EMT regulation.
Amongst those, hypoxia, inflammation, and metabolic
stress appear to be of special importance [100]. Interest-
ingly, high blood glucose concentration, a crucial charac-
teristic of diabetes, has also been shown to facilitate
EMT and metastasis formation [7], thus linking a docu-
mented risk factor to a relevant tumorbiological process.
In order to colonize foreign tissues circulating PDAC
cells must undergo a reverse form of EMT (MET) and
re-acquire the epithelial state [106, 107]. Morphologic-
ally and mechanistically, MET displays many features of
EMT in an inverse manner. However, the details of this
process as well as its master regulators are still being
investigated.
EMT/MET phenomena seem to be crucial elements in

the process of metastasis formation, yet gene expression
profiling and epigenomic comparisons between primary
tumor cells and metastatic cells also disclosed an in-
volvement of other mechanisms, such as rewiring of the
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carbohydrate metabolism, e.g. in the oxidative branch of
the pentose phosphate pathway, as well as shifts in en-
ergy consumption [58, 108, 109]. Further studies re-
vealed a (re-)activation of embryonic programs and/or
elevated expression levels of cancer stem cell markers,
including forkhead box protein A1 (FOXA1), aldehyde
dehydrogenase 1 (ALDH1), ATP-binding cassette sub-
family G member 2 (ABCG2), and hepatocyte growth fac-
tor receptor (c-Met), in metastatic PDAC cells, suggesting
a close relationship between retrograde developmental
transition, cancer cell stemness and biological features of
metastasis formation [57, 110]. Finally, the primary
tumor appears to condition the future target organ of
metastasis by releasing soluble factors and/or exosomes,
thus generating a pre-metastatic niche – even in the sta-
tus of a premalignant lesion [111]. Key players in this re-
gard have been identified to be tissue inhibitor of
metalloproteinases 1 (TIMP-1) and macrophage migra-
tion inhibitory factor (MIF) [112, 113].

Therapy resistance
A signature hallmark of PDAC is its high degree of re-
sistance against virtually any kind of therapy [114–116].
Accordingly, overcoming treatment resistance will be

essential in order to improve the overall prognosis of
PDAC.
The therapeutic success of current first-line chemother-

apy involving cytidine analogues, the poly-chemothera-
peutic protocol FOLFIRINOX, or gemcitabine plus nab-
paclitaxel, respectively, is strongly limited by intrinsic and/
or acquired chemoresistance, and the underlying mecha-
nisms are only poorly understood [21, 115]. Several pre-
dictive biomarkers have been identified, e.g. increased
expression of ribonucleotide reductase catalytic subunits
M1/2 (RRM1/2), an enzyme catalyzing the reduction of ri-
bonucleotides, or human equilibrative nucleoside trans-
porter 1 (hENT1), a transmembrane protein which
imports nucleosides into the cytosol [117, 118]. In preclin-
ical studies, it was observed that elevated expression levels
of RRM1 indeed mediate resistance of PDAC cells to gem-
citabine [117–119], yet no association between RRM1 ex-
pression and OS was detected in clinical analyses [120].
Similar examples are given by integrin-linked kinase (ILK)
[121] and hypoxia-inducible, pro-apoptotic factor BCL2/
adenovirus E1B 19 kDa protein-interacting protein 3
(BNIP3) [122]. Furthermore, cells of the microenviron-
ment limit the efficacy of gemcitabine treatment. Recent
data show that CAFs contribute to gemcitabine failure by

Fig. 4 PDAC epithelial-mesenchymal transition and metastasis formation.
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metabolizing gemcitabine to the active metabolite 2′,2′-
difluorodeoxycytidine-5′-triphosphate (dFdCTP). How-
ever, since dFdCTP cannot cross cell membranes, this
process scavenges gemcitabine and reduces the effective
concentration of the active metabolite in the tumor cells
[123]. In case of FOLFIRINOX treatment, increased ex-
pression of thymidylate synthase (TS) and the 5-FU-catab-
olizing enzyme dihydropyrimidine dehydrogenase (DPD)
were shown to contribute to therapy resistance, both in
preclinical models and in retrospective clinical analyses
[119, 124]. However, despite all these efforts, biomarker-
based, individualized chemotherapy protocols are far from
being clinical standard. This is predominantly due to a
lack of prospective validation studies, let alone random-
ized controlled trials.
PDAC tumors also exhibit a high degree of radioresis-

tance often resulting in tumor progression even during
therapy [125]. As in case of chemoresistance, the
responsible mechanisms appear to be multifactorial.
From a biophysical point of view, the hypoxic PDAC
microenvironment reduces the biological effectiveness of
photon irradiation by 2-3 fold as compared to well-
oxygenated tissues and, thus, attenuates its therapeutic
efficacy [126, 127]. Additionally, several studies revealed
an overexpression of key regulators of the DNA damage
response, e.g. RAD51, in PDAC which contribute to ac-
celerated repair of radiation-induced DNA damage [128,
129]. Other studies provided evidence for an implication
of Integrin- or SMAD signaling in PDAC radioresistance
[130–132]. Finally, increased recruitment of monocytes
upon irradiation stimulating tumor cell proliferation and
neovascularization in response to therapy have been
discussed [133]. In order to counteract PDAC radioresis-
tance, several approaches focused on adjusting radio-
therapeutic protocols. As such, radiotherapy meanwhile
is frequently combined with concomitant chemotherapy
(radiochemotherapy), using gemcitabine, 5-FU, or cape-
citabine as radiosensitizing agents [134, 135]. Addition-
ally, stereotactic irradiation regimens with higher single
doses, including SBRT and ablative body radiotherapy,
are increasingly being employed aiming at the delivery
of higher biologically active doses to the tumor [26, 31,
136]. However, therapeutic success is still rather limited,
and future attempts should evaluate the clinical potential
of biologically and/or immunologically optimized radio-
chemotherapy strategies.

Novel approaches of mechanism-based, molecularly
targeted therapies
Biologically targeted therapies (1,363 words)
Since less than 20% of all PDAC patients exhibit surgi-
cally resectable disease at time of presentation, systemic
chemotherapy is currently the most frequently applied
treatment option [21]. Albeit the development of novel

poly-chemotherapy protocols, the overall prognosis, and
survival rate of PDAC patients still remain poor. Hence,
there is a strong demand for novel, biologically motivated
treatment strategies with higher specificity for PDAC-
relevant, tumor-driving targets. The genomic landscape of
PDAC is dominated by a handful of signature genes which
are affected by aberrations and mutations at high frequen-
cies: KRAS, CDKN2A, TP53, and SMAD4 [49, 51]. All of
these genes are still basically considered to be undrug-
gable, although agents targeting mutant TP53 have been
developed, and attempts to pharmacologically manipulate
RAS function are constantly increasing [137, 138]. So far,
substances targeting downstream effectors of these major
PDAC drivers or other regulators which are also fre-
quently altered, including BRAF, ERK, PI3K/AKT, and
mTOR, are in the focus of investigation.
The mitogen-activated protein kinase (MAPK) signaling

cascade offers promising perspectives in this regard, be-
cause PDAC cells are known to depend on MAPK signal-
ing, both in terms of progression and metastasis formation
[139, 140]. The most apical possibility to interfere with
MAPK signaling is targeting the epidermal growth factor re-
ceptor (EGFR). However, a phase III trial evaluating the effi-
cacy of anti-EGFR treatment with cetuximab in addition to
gemcitabine-based chemotherapy showed no significant
improvement in clinical outcome [141]. Recent data
attributed this to a compensatory activation of Integrin β1
signaling [142]. Downstream of EGFR, KRAS constitutes a
near-perfect target for PDAC treatment as revealed by pre-
clinical RNA interference experiments [143]. However, clin-
ical RNA interference is challenging, and no reliable KRAS
inhibitors have been described so far [144]. Nevertheless,
pharmacological disruption of the interaction between
KRAS and phosphodiesterase PDEδ was shown to effi-
ciently suppress PDAC progression in vitro and in vivo
[145]. The only targeting approach forMAPK signaling that
has entered the clinical routine thus far is the combination
of gemcitabine and the EGFR-specific tyrosine kinase in-
hibitor erlotinib [146]. Although EGFR is considered to be
its only target, erlotinib was reported to be similarly effect-
ive in tumors with wildtype or hyperactive mutants of
KRAS, respectively [147]. This implies that either inhibition
of tyrosine kinases other than EGFR or feedback regulatory
mechanisms between hyperactivated KRAS and EGFR may
be involved, respectively [148–151]. Sunitinib, a tyrosine
kinase inhibitor that does not target EGFR, failed to show
similar performance when combined with gemcitabine
[152], and preclinical data support the notion that indeed
inhibition of gemcitabine-induced MAPK signaling by erlo-
tinib accounts for the observed clinical benefits [153].
Several other inhibitors of MAPK signaling, including in-
hibitors of EGFR, MEK, ERK, and corresponding protein
phosphatases, have shown convincing performance in pre-
clinical studies [154–156], but their potential for clinical

Orth et al. Radiation Oncology          (2019) 14:141 Page 7 of 20



implementation remains to be examined, as for instance in
ACCEPT, a randomized phase II trial combining gemcita-
bine with the EGFR inhibitor afatinib (NCT01728818).
Single-drug treatments – most likely – will not be

sufficient to improve the therapeutic outcome of
PDAC [157]. Instead, dual or even multiple targeting
strategies appear to be required in order to achieve
significant advances. One example is the concomitant
inhibition of MAPK and PI3K/AKT signaling. Preclin-
ical data revealed that inhibition of MAPK signaling
results in potent compensatory activation of PI3K/
AKT signaling and vice versa, each being of import-
ance for PDAC progression [158, 159]. Indeed, con-
comitant inhibition of MAPK and PI3K/AKT signaling
did interfere with tumor progression to significantly
greater extent than the single-drug treatments in pre-
clinical PDAC models [158, 160]. However, other
studies reported only modest effects of combined
MAPK and PI3K/AKT inhibition [161–163], and
clinical trialing of this combination failed [164]. One
potential explanation could be that inhibitors of dif-
ferent target specificities were employed. A more de-
tailed characterization of the target spectrum of these
inhibitors would clarify this and could also help to
find new targets for mechanism-based therapies. In
this regard, upstream and/or transcriptional regulators
of PI3K expression, such as transducin beta-like 1
(TBL1), may also be of interest as studies in genetic
mouse models have identified them as crucial check-
points in PDAC development and progression [165].
Nevertheless, if this mechanism can be exploited
therapeutically remains unclear [166].
The mammalian target of rapamycin (mTOR) pathway

is best known for its functions in cell survival, prolifera-
tion, motility, and evasion of apoptosis [167]. In several
preclinical studies, mTOR inhibitors revealed promising
results [168–171], but it was also reported that inhibition
of mTOR stimulates feedback activation mechanisms in-
volving MEK/ERK or AKT signaling, respectively, further
emphasizing the need for combinatorial treatment regi-
mens [172–176]. Not surprisingly, multi-pathway inhib-
ition regimens are commonly associated with higher levels
of toxicity [177]. This toxicity often interferes with clinical
implementation. Nevertheless, clinical trials evaluating
mTOR inhibition as monotherapy in PDAC altogether
failed [178–180], and combined modality approaches of
mTOR inhibition in conjunction with capecitabine re-
vealed only limited improvements as compared to capecit-
abine alone [181]. These findings raise the question
whether mTOR inhibitors, despite their successful clinical
implementation for the treatment of neuroendocrine pan-
creatic tumors, may at all represent a therapeutic alterna-
tive for the treatment of PDAC [182], or whether such
approaches have been inadequately tested in the clinic.

PDAC is commonly considered a hypovascularized
tumor [183], but relevant expression of vascular endo-
thelial growth factor A (VEGF-A) has been observed
[184]. Therefore, the VEGF-A-specific antibody bevaci-
zumab was tested in combination with gemcitabine in a
randomized phase III trial with locally advanced PDAC
but failed to show improved outcome [185]. A possible
explanation could be the expression of other VEGF
isoforms. However, complementary phase III trials
which evaluated the VEGF receptor tyrosine kinase in-
hibitor axitinib in combination with gemcitabine, or
the combination of bevacizumab, gemcitabine, and er-
lotinib, respectively, also failed [186, 187]. In sum-
mary, these results render therapeutic targeting of
angiogenesis a questionable approach for the treat-
ment of PDAC [188].
A subset of PDAC tumors (approximately 15% of all

cases) is characterized by mutations in genes that are re-
lated to the DNA damage response [54]. Amongst those,
PDAC tumors carrying mutations in BRCA1/2 genes are
of highest interest as they are supposed to be defective
in homologous recombination DNA damage repair
[189]. Accordingly, patients with BRCA1/2-mutated tu-
mors were reported to benefit significantly more from
platinum-based chemotherapy than patients with
BRCA1/2 wildtype tumors [190, 191]. For BRCA1/2-de-
ficient tumors, the inhibition of Poly-(ADP-ribose)-poly-
merase (PARP) may be promising, since this enzyme
shares an axis of synthetic lethality with BRCA1/2 [192].
Initial trials examining the therapeutic potential of PARP
inhibitors in patients with BRCA1/2-deficient PDAC re-
ported promising results [193–196]. Currently, the ran-
domized phase III POLO trial is evaluating PARP
inhibition in patients who received first-line platinum-
based chemotherapy, and results are awaited in 2019
(NCT02184195). Beyond BRCA1/2, mutations in other
genes of the DNA damage response, including ATM,
may select for PARP inhibitor sensitivity [197].
In addition to the described genetic alterations,

PDAC tumors display relevant changes in epigenetic
modifications, including DNA methylation, histone
post-translational modification, nucleosome remodel-
ing, and regulation by non-coding RNAs [56]. In con-
trast to genetic alterations, epigenetic modifications
are in principle reversible, and it is plausible to as-
sume that pharmacological interference with epigen-
etic mechanisms underlying PDAC pathology and
progression could open new therapeutic perspectives
[198]. Preclinical results of epigenetic therapies have
so far been promising, PDAC cell plasticity could be
reduced, and resistance against standard chemother-
apy was attenuated. However, in mono-agent settings,
epigenetic therapeutics did not provide any measurable
benefits, demanding for combined modality settings, e.g.
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in conjunction with chemotherapy or in form of multi-
agent combinations, such as combined inhibition of bro-
modomain and extra-terminal motif (BET) proteins and
histone deacetylases (HDACs) [199]. Currently, various
phase I/II trials are ongoing which will determine the clin-
ical perspectives of such approaches. Despite all efforts,
individualized, mechanism-based treatment strategies for
PDAC are still far from being clinical standard [200].
Therapeutic targeting of hypoxia and metastasis for-

mation appears to be very attractive in the PDAC con-
text, since hypoxia is a principal determinant of therapy
resistance and metastasis formation, and metastases are
the major cause of death [20, 74]. Regardless of all pre-
clinical efforts [201], however, no therapeutic strategy
could so far be established. Sort of alternatively, efforts
to (re-)activate the immune system in order to detect
and combat macro- and micro-metastases have been
undertaken and will be discussed in the following.

Immunotherapy
Immunotherapy implementing immune checkpoint in-
hibitors has revolutionized cancer treatment in the last
years [202]. Therapeutic antibodies targeting cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) or the axis of
programmed cell death protein 1 (PD-1) and its corre-
sponding ligand PD-L1 have shown compelling results
in several different cancer types, including metastasized
melanoma and lung cancer [36, 203]. Hence, immune
checkpoint inhibition was also tested in PDAC [35, 39],
but compared to melanoma and lung cancer, consider-
ably smaller numbers of patients (approximately 2%) ex-
hibited clinical benefits [40, 204]. Consistently, the
responding tumors showed high levels of microsatellite
instability, providing a mechanistic explanation as well
as a potential future stratification marker, since micro-
satellite instability is known to increase the number of
tumor-associated neo-antigens [205].
A major determinant of the immunotherapeutic suc-

cess are tumor-specific T cells and their (re-)activation.
Although their numbers have been described to be ra-
ther low in PDAC patients [90], recent data suggest that
the tumor-reactive T-cell repertoire is similar to the one
found in melanoma where T cell-based therapies mean-
while have relevant therapeutic impact [91]. Further
studies showed that neo-antigen quality rather than
quantity, and strong intra-tumoral CD8+ T cell infiltra-
tion are associated with prolonged survival, indicating
that the stimulation of anti-tumor T cell responses can
indeed be a promising strategy for the treatment of
PDAC [60, 206, 207]. Along these lines, different vaccin-
ation strategies employing various kinds of antigens have
already been tested [208–210]. The Algenpantucel-L vac-
cine consisting of irradiated, allogeneic pancreatic tumor
cells stably expressing alpha-1,3-galactosyltransferase 2

(A3GALT2), a glycosylating enzyme that mainly targets
lipids and extracellular proteins, turned out to be the most
promising candidate for a PDAC-targeting vaccine [209].
However, this vaccine failed to improve treatment efficacy
when being tested in a randomized phase III trial com-
bined with the standard of care [211]. Other antigens that
were examined include peptides derived from human tel-
omerase 1 (TERT1) and GVAX, a vaccine comprised of
autologous or allogeneic tumor cells expressing the den-
dritic cell-stimulating cytokine GM-CSF [212, 213]. Unfor-
tunately, none of these vaccines achieved convincing
clinical results. In principle, common PDAC driver muta-
tions, such as KRASG12D, can harbor tumor-specific, T cell
epitopes [214]. An ongoing phase II trial first predicts
such neo-antigens using exome-sequencing of tumor
biopsies, followed by production of personalized den-
dritic cell vaccines loaded with the respective epitopes
(NCT03300843) [215]. Whether this strategy turns
out to be successful needs to be awaited. Overall, sev-
eral vaccination approaches could successfully elicit
measurable anti-tumor T cell responses, yet so far
none of these strategies resulted in clear clinical ben-
efits [216].
Antigen-independent immunostimulatory therapies

aim at the activation of antigen-presenting cells. Diverse
receptor-ligand-axes have been explored in this regard.
As such, treatment with agonistic anti-CD40 antibodies
is well known to activate antigen-presenting cells and to
polarize macrophages towards the pro-inflammatory
M1-like state [217, 218]. However, clinical evaluation of
this strategy in PDAC patients disclosed only short-term
responses, and no long-term anti-tumor immunity was
observed [219]. Nevertheless, CD40 stimulation in com-
bination with chemotherapy and immune checkpoint
blockade is currently under clinical investigation in a
phase I/II trial (NCT03214250). Complementary ap-
proaches to achieve activation of antigen-presenting cells
involve ligand-dependent stimulation of pattern recogni-
tion receptors (PRRs) [220]. Indeed, agonists of toll-like
receptors (TLRs), RIG-I-like helicases (RLHs), and the
stimulator of interferon genes (STING) revealed encour-
aging results in preclinical PDAC models [221–223], but
their clinical potential remains to be elucidated.
Bypassing the in situ steps of T cell priming by anti-

gen-presenting cells, adoptive transfer of T cells carrying
chimeric antigen receptors (CARs) has proven powerful
clinical performance in B-cell malignancies [224]. CAR
T cells recognize specific cancer cell surface antigens
through a single-chain variable fragment (scFv) whose
ligation stimulates T cell activation via the intracellular
domains of the CAR construct, resulting in efficient T
cell-mediated killing of the target cell [225]. PDAC ex-
hibits several tumor-specific antigens, such as carci-
noembryonic antigen (CEA), mesothelin (MSLN), and
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mucin 1 (MUC1), which are promising determinants for
CAR T cell therapy [226, 227]. However, for solid cancer
entities, intra-tumoral recruitment and trafficking of
CAR T cells as well as the commonly observed immuno-
suppressive tumor microenvironment appear to be
major challenges. Intelligent combinations, thus, are
needed in order to overcome these obstacles.
A cardinal feature of the immunosuppressive PDAC

microenvironment is its massive stromal content and the
excessive deposition of extracellular matrix, including
hyaluronan [72]. Early phase clinical trials combining re-
combinant human hyaluronidase 20 (rHuPH20) with
gemcitabine and nab-paclitaxel revealed promising results,
particularly in those patients whose tumors were charac-
terized by high levels of hyaluronan [228]. Reporting of
the HALO-109-301 phase III trial (NCT02715804) is
awaited in order to fully assess the clinical performance of
this approach [229]. Inhibition of FAK1, a tyrosine kinase
involved in the process of CAF generation, constitutes an-
other approach to interfere with stromal function in
PDAC, and pharmacological FAK1 inhibition eventually
rendered preclinical PDAC model systems more suscep-
tible to T cell immunotherapy and immune checkpoint in-
hibition [73]. Other studies showed that genetic ablation
or inhibition of FAK1 also increases PDAC responsiveness
to gemcitabine and nab-paclitaxel [230, 231]. In rather
strong contrast, genetic deletion of stromal myofibroblasts
in PDAC mouse models led to disease exacerbation and
diminished animal survival due to enhanced regulatory T
cell-mediated immunosuppression, clearly calling for cau-
tion when targeting components of PDAC stroma [78].
On a cellular level, massive infiltration by myeloid

cells, such as MDSCs, and resulting exclusion of CD8+

T cells are major hallmarks of the immunosuppressive
PDAC microenvironment [86, 232]. Several myeloid
cell-targeting approaches have been investigated in re-
cent years in order to overcome these mechanisms of
immunosuppression [82, 233, 234]. Chemokine receptor
2 (CCR2), for instance, is known to contribute to the
infiltration of pancreatic tumors by monocytes and mac-
rophages, and this is associated with reduced patient
survival and poor outcome [235]. Strikingly, the combin-
ation of CCR2 blockade and gemcitabine/nab-paclitaxel
chemotherapy showed promising results in phase I trials
[85, 236]. However, the follow-up phase Ib/II trial
(NCT02732938) was discontinued due to strategic consid-
erations, and instead phase I/II trials with combined mo-
dality approaches of CCR2 blockade in conjunction with
pre-operative SBRT and immune checkpoint inhibition
were recently initiated (NCT03778879, NCT03767582).
Another target that regulates the function of macrophages
and MDSCs in PDAC is M-CSF. Preclinical data suggest
that M-CSF blockade can indeed reprogram macrophages
and thus, synergize with immune checkpoint inhibition,

but the clinical potential of this strategy remains to be ex-
amined [237].
In summary, (re-)activating anti-PDAC immunity in

order to improve the overall clinical outcome appears
clearly more challenging than extrapolated experiences
from other cancer entities have suggested. Probably the
most promising strategies would incorporate combina-
tions of different immunotherapeutic approaches and/or
combinations with other (classical) treatment modalities,
such as chemotherapy and/or radiotherapy [238].

Combined modality treatment approaches encompassing
radio(chemo)therapy
In order to improve the efficacy and the outcome of
clinical PDAC treatment, it will be inevitable to develop
novel treatment strategies which combine different
therapeutic modalities aiming at achieving synergism
[239]. The rationale for such approaches is to outcom-
pete therapy resistance, but their development remains
challenging as combined modality treatments are fre-
quently associated with higher toxicity levels [240]. We
already discussed several combined modality attempts
involving different chemotherapeutics, either with each
other or with novel, molecularly targeted inhibitors. At
this point, we want to concentrate on combinatorial ap-
proaches involving radiotherapy (Fig. 5).
Radiotherapy has rather infrequently been used for

the treatment of PDAC. Nevertheless, there have been
approaches to improve the efficacy of radiotherapy in
PDAC. One obvious strategy is to combine radiother-
apy with radiosensitizing agents which either can be
classical chemotherapeutic drugs, such as gemcitabine
or 5-FU, or – as has been reported more recently –
molecularly designed inhibitors that target specific
proteins and/or structures involved in PDAC radiore-
sistance [28, 125]. The MAPK pathway is a very at-
tractive target [140], and preclinical data derived from
different PDAC mouse models showed that interfer-
ence with MAPK signaling by cetuximab treatment
can indeed increase the efficacy of radiochemotherapy
[241, 242]. Encouraged by these observations, several
clinical trials were initiated, yet with only modest re-
sults [243–246]. The major reason was the persist-
ently high rate of distant failure due to metastasis
formation, rather than poor local control [244, 246].
Pharmacological intervention with the PI3K/AKT and

the mTOR pathway has also been examined with regards
to its radiosensitizing potential. Several preclinical stud-
ies obtained basically positive results [247–253]. How-
ever, due to very unfavorable pharmaceutical properties
of the employed substances, e.g. elevated toxicity levels
and crossover inhibition, none of these approaches have
entered the clinic thus far.
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A very direct approach of radiosensitization is the em-
ployment of molecularly designed drugs which target
components of the DNA damage response, specifically the
upstream kinases ATM, ATR, CHK1/2, and DNA-PK
[254–256]. Several of these inhibitors displayed convin-
cing synergism with ionizing irradiation or DNA-dam-
aging chemotherapy in preclinical PDAC model systems
[257–263], but the transferability into the clinic remains
to be investigated – particularly in view of local control
versus distant failure. PARP is another example for a DNA
damage response regulator that can be targeted by highly
refined inhibitors, and preclinical data suggest that PARP
inhibition indeed can radiosensitize PDAC cells [264].
However, since PARP is known to share synthetic lethality
with BRCA1/2 [192], PARP inhibition may turn out to be
only effective in BRCA1/2 deficient tumors [265]. This is a
general lesson that has been learned in the era of molecu-
larly targeted therapy: Molecularly designed therapy re-
quires upfront molecular diagnostics and proper patient
stratification, since otherwise promising agents are prone
to fail if they are trialed in the wrong subgroups of
patients.
Apart from its potential to induce tumor cell death,

radiotherapy is known to recondition the tumor micro-
environment and to stimulate systemic anti-tumor im-
mune responses – a phenomenon summarized as
abscopal effects of radiotherapy [266–268]. However, in
the monotherapy setting, radiation is often not sufficient
to break the immunosuppressive milieu of established
tumors, and combinations with immunostimulating

agents are required. As an example, radiotherapy plus
GM-CSF, a potent stimulator of antigen-presenting cell
maturation, produced objective abscopal responses in a
subset of patients with different metastatic tumors [269],
and a recent case report showed similar effects in a pa-
tient with metastatic pancreatic cancer [270]. In preclin-
ical model systems, PDAC tumors have been reported to
regress convincingly upon immunotherapeutic targeting
of CCL2 or PD-L1 in combination with radiotherapy via
a reduction of intra-tumoral immunosuppressive mye-
loid cells and enhanced recruitment of tumor-specific T
cells [133, 271], and the clinical performance of this ap-
proach will be investigated (NCT03778879, NCT03767582).
Similarly, radiotherapy has been described to repro-
gram tumor-infiltrating macrophages towards an M1-
like phenotype and to favor intra-tumoral recruitment
of adoptively transferred T cells in a mouse model of
neuroendocrine pancreatic cancer [272]. These obser-
vations were confirmed by pilot data from patients with
advanced PDAC stages undergoing neoadjuvant irradi-
ation prior to tumor resection revealing 3- to 5-fold in-
creases in intra-epithelial CD4+ and CD8+ T cells as
compared to non-irradiated control patients [272, 273].
If these findings may also be transferred to combina-
tions with PDAC-specific CAR T cells remains to be ex-
amined. On a mechanistic level, cytosolic DNA-sensing
upon irradiation-induced DNA damage and type I
interferon signaling appear to be involved in the immu-
nostimulating effects of radiotherapy [274, 275]. Ac-
cordingly, artificial activation of cytosolic DNA sensors,

Fig. 5 Combined modality perspectives for the treatment of PDAC.
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such as STING, was shown to increase the efficacy of
radiotherapy by enhancing CD8+ T cell responses – at
least in preclinical PDAC models [276].
From clinical experiences with other cancer entities it

is becoming increasingly evident that the combination of
radiotherapy and immunotherapy requires very careful
considerations regarding timing, dosing, and treatment
sequence in order to achieve the best outcome [266].
This may be of particular interest for PDAC with its
highly challenging immunosuppressive microenviron-
ment. In brief, higher single doses of radiotherapy, e.g.
SBRT or ablative protocols, applied in neoadjuvant set-
tings appear to be beneficial, and immunotherapy needs
to be started before or with the first irradiation fraction,
respectively [266]. However, the optimal treatment regi-
men and the best combination of agents for PDAC remain
unclear as well as the impact of additional chemotherapy
and other factors, such as type II diabetes and/or obesity.
A pilot study addressing some of these combinatorial is-
sues added radiotherapy to CD40-dependent immunosti-
mulation plus anti-CTLA-4/anti-PD-1-mediated immune
checkpoint blockade in genetically engineered PDAC
mouse models and utilized machine learning algorithms
to extract signature patterns for each therapeutic compo-
nent [277]. Along these lines, more in depth-analyses
are needed in order to fully exploit the synergism
between radiotherapy and immunotherapy. Neverthe-
less, several clinical phase I/II trials combining
radiotherapy with different immunotherapeutic ap-
proaches have been initiated for advanced PDAC,
and first results are awaited [278] (NCT02648282,
NCT03161379, NCT03767582, NCT03563248).

Conclusions
PDAC represents a cancer entity of extraordinarily high
malignancy, particularly poor prognosis, and constantly
increasing patient numbers. Its aggressive biology and
the fact that most patients present in advanced or dis-
seminated stages of disease render the development of
novel PDAC treatment strategies one of the super-
ordinate challenges in current oncological research. Re-
sults of the last 20 years have led to the establishment
of a detailed multi-step model of PDAC development
and progression. Although this has unquestionably re-
formed our understanding of PDAC as a disease, none
of these findings could be successfully translated into a
therapeutic breakthrough so far. It is becoming increas-
ingly evident that the clinical performance of single-
agent therapies lags behind the original expectations,
and instead intelligent combinations appear to be re-
quired. In this regard, radiotherapeutic protocols, and
particularly modern radiation techniques with high
conformality and steep dose gradients, represent at-
tractive partners both for biologically motivated as well

as for immunotherapeutic strategies. Importantly, how-
ever, this will require in-depth optimization of timing,
dosing, and treatment sequences, as well as careful up-
front patient stratification. Otherwise per se promising
combinations run the risk of failing prematurely.
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