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Applying a RapidPlan model trained on a
technique and orientation to another: a
feasibility and dosimetric evaluation
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Abstract

Background: The development of a dose-volume-histogram (DVH) estimation model for knowledge-based
planning is very time-consuming and it could be inefficient if it was only used for similar upcoming cases as
supposed. It is clinically desirable to explore and validate other potential applications for a configured model. This
study tests the hypothesis that a supine volumetric modulated arc therapy (VMAT) model can optimize intensity
modulated radiotherapy (IMRT) plans of other patient setup orientations.

Methods: Based on RapidPlan, a DVH estimation model was trained using 81 supine VMAT rectal plans and
validated on 10 similar cases to ensure the robustness of its designed purpose. Attempts were then made to apply
the model to re-optimize the dynamic MLC-sequences of the duplicated IMRT plans from 30 historical patients (20
prone and 10 supine) that were treated with the same prescription as for the model (50.6 and 41.8 Gy to 95 % of
PGTV and PTV simultaneously/22 fractions). The performance of knowledge-based re-optimization and the impact
of setup orientations were evaluated dosimetrically.

Results: The VMAT model validation on similar cases showed comparable target dose distribution and significantly
improved organ sparing (by 10.77 ~ 18.65 %) than the original plans. IMRT plans of either setup can be re-optimized
using the supine VMAT model, which significantly reduced the dose to the bladder (by 25.88 % from 33.85 ± 2.96
to 25.09 ± 1.32 Gy for D50 %; by 22.77 % from 33.99 ± 2.77 to 26.25 ± 1.22 Gy for mean dose) and femoral head (by
12.27 % from 15.65 ± 3.33 to 13.73 ± 1.43 Gy for D50 %; by 10.09 % from 16.26 ± 2.74 to 14.62 ± 1.10 Gy for mean
dose), all P < 0.01. Although the dose homogeneity and PGTV conformity index (CI_PGTV) changed slightly (≤0.01),
CI_PTV of IMRT plans was significantly increased (Δ = 0.17, P < 0.01) by the manually defined target-objectives in the
VMAT optimizer. The semi-automated IMRT planning increased the global maximum dose and V107 % due to the
missing of hot spot suppression by specific manual optimizing or fluence map editing.

Conclusions: The Varian RapidPlan model trained on a technique and orientation can be used for another.
Knowledge-based planning improves organ sparing and quality consistency, yet the target-objectives defined for
VMAT-optimizer should be readapted to IMRT planning, followed by manual hot spot processing.
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Background
Knowledge-based treatment planning is a promising solu-
tion to reduce the planning time [1–4] and planner-
dependence of plan quality [5–11]. As a commercial
knowledge-based optimizer, Varian RapidPlan (Varian
Medical Systems, Palo Alto, CA) has been validated on
patients with head & neck, lung, esophageal, breast, hepa-
tocellular and prostate cancer [12–17] based on similar
cases for model training and dosimetric testing. However,
no attempts have been made to extend the domain of
model applications to less-similar patients so far.
Considering the treatment techniques (VMAT/IMRT)

and patient setup orientations (supine/prone) may vary
even for the same disease, it would be very time-
consuming if not impractical to train specific models for
all clinical varieties. In addition, the existing similar
plans of a special type may be insufficient for the config-
uration of a qualified model. Therefore, it is highly desir-
able to explore and validate other potential possibilities
of using an existing model more efficiently. Considering
the full-arc VMAT covers all possible field angles of
IMRT, and the geometry-based expected dose (GED) al-
gorithm of RapidPlan is independent from patient orien-
tations, this study aims to investigate the feasibility and
dosimetric performance of applying a DVH estimation
model trained on supine VAMT plans to the knowledge-
based optimization of IMRT plans of both supine and
prone setup orientations.

Methods
Model configuration and validation
A DVH estimation model was configured with 81
simultaneous-integrated-boosting VMAT plans for pre-
operative rectal cancer patients of supine setup. All
training plans were manually created by senior dosime-
trists based on Eclipse treatment planning system (V11.0
or before) following consistent dose prescriptions and
planning protocols (50.6 Gy and 41.8 Gy to 95 % of
PGTV and PTV respectively/ 22 fractions, 1–2 full arc,
5° collimator rotation, and 10 MV photon). As recom-
mended by Varian’s manual [18], model validation was
conducted on similar cases before publication. Specific-
ally, 10 historical plans of the same type that were not
used for the model training were duplicated, and the
model was applied to re-optimize the plan copies (re-
ferred as RP-VMAT plans). The RP-VMAT plans were
compared with the original plans to check if the model's
robustness of its designed purpose was clinically
acceptable.

Knowledge-based IMRT planning
To avoid the bias of comparing the knowledge-based
plans with the manual plans that were made subopti-
mal intentionally, the duplications of all 30 testing

IMRT plans (20 prone and 10 supine, due to very lim-
ited supine patients treated with IMRT historically at
our centre) were retrospectively selected from the clin-
ically approved and treated cases of identical prescrip-
tions as for the model. Using sliding window technique,
each original IMRT plan was manually developed with
five fields of 10 MV photon beams. The knowledge-
based re-planning maintained all other settings except
the MLC sequences were re-optimized using the esti-
mates and objectives generated by the supine VMAT
model (referred as RP-IMRT plans). The Photon
Optimizer for IMRT (PO_13535), DVH Estimation
Algorithm (v. 13.5.35) and Anisotropic Analytical
Algorithm (AAA_13535) were selected for the auto-
matic RP-IMRT optimization. Relative to the conven-
tional DVO and PRO algorithms for the manual
optimization of IMRT or VMAT plans, the new PO al-
gorithm for RapidPlan is applicable to both techniques,
which uses one single matrix over the image to define
the structures, DVH calculation and dose sampling
spatially [18]. Based on GED, PO partitions OAR voxels
into four sub-volumes and predict the most likely land-
ing range for the DVH curves, which were generated as
optimization objectives for the knowledge-based plan-
ning. To base the dosimetric comparison on similar tar-
get dose coverage, all RP and original plans were
renormalized to satisfy the dose prescriptions for both
PGTV and PTV. Visual inspection of sectional dose
distribution was routinely performed to examine the
target coverage and hot spots appearance.

Dosimetric assessment and statistical comparison
Using the following DVH metrics, the dosimetric fea-
tures were compared between the original vs. RP-
VMAT, original vs. RP-IMRT plans and prone vs. supine
setup orientations respectively: 1. homogeneity index of
PGTV (HI_PGTV) and PTV (HI_PTV), defined as (D2 % −
D98 %)/D50 %; 2. conformity index of PGTV (CI_PGTV)
and PTV (CI_PTV), defined as V100 %/Vt arg et; 3. the rela-
tive volume exceeding 107 % of the prescribed dose to
PGTV (V107 %, i.e. V54.14Gy); 4. Global maximum dose
(Dmax) and near maximum dose in PGTV (D2 %) [19]; 5.
The dose to 50 % of the femoral head volume and urin-
ary bladder volume (D50 %_FH and D50 %_UB); 6. The
mean dose to the femoral head and urinary bladder
(Dmean_FH and Dmean_UB). 7. The total monitor units
(MUs) of each plan.
To assess the differences between the original plans

and the knowledge based re-planning, paired samples t-
test was conducted for normally distributed data (tested
by Shapiro-Wilk method), otherwise Wilcoxon signed
ranks test was performed using SPSS (version 21.0). To
appraise the impact of supine and prone setup orienta-
tions on the dosimetric outcomes, independent sample
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t-test and Mann-Whitney U Test were carried out re-
spectively for the data of normal and non-normal dis-
tributions. The equality of variances was examined by
Levene's test. P < 0.05 was considered as statistically
significant (2-tailed). Based on the tabular-formatted
DVH data exported from Eclipse system, an in-house
MATLAB code was programmed to calculate the mean
DVHs of 30 patients that were either manually planned
or knowledge-based re-planned. Plotting was per-
formed using SigmaPlot software (Version 10.0, Systat,
San Jose, CA).

Results
Model validation on similar cases
Table 1 displays the model validation results by optimiz-
ing similar supine VMAT cases. Relative to the manually
optimized clinical plans, RapidPlan has brought negli-
gible changes to HI_PGTV, HI_PTV, CI_PGTV, CI_PTV, Dmax

and D2 %. Negligible V107 % values were observed in 3/10
original plans (magnitude ≤0.18 %), but only in 1/10 RP-

VMAT population. On the other hand, RP-VMAT plans
have significantly and largely relieved the normal organ
exposure than the clinical plans.

Original vs. RP-IMRT plans
Knowledge-based DVH estimations and objectives could
be automatically generated for the RP-IMRT
optimization using the VMAT model. As an explicit
comparison between the original and RP-IMRT plans re-
gardless of the setup orientations, Fig. 1 illustrates the
average DVHs of the 30 patients stratified by the plan-
ning methods.
Relative to the original plans (Table 2), the model-

assisted re-optimization has significantly reduced the
dose to the urinary bladder and femoral head. The mar-
ginal changes of CI_PGTV and D2 % were insignificant.
Significant but negligible increases of HI were observed
in RP-IMRT plans. However, knowledge-based IMRT
planning using the VMAT model has significantly in-
creased the dose conformity index to PTV and the

Table 1 Validation of DVH estimation model by applying it to similar cases: dosimetric comparison between the 10 clinical supine
VMAT plans and their knowledge-based re-optimizations

Mean SD 95 % Confidence intervals △(%) P

Lower Upper

HI_PGTV Original 0.06 0.01 0.05 0.07 0.01 0.15*

RP-VMAT 0.05 0.01 0.05 0.06

HI_PTV Original 0.26 0.01 0.25 0.27 0 0.62*

RP-VMAT 0.26 0.01 0.25 0.27

CI_PGTV Original 1.01 0.04 0.98 1.04 0.01 0.11

RP-VMAT 1.00 0.04 0.97 1.03

CI_PTV Original 1.03 0.02 1.02 1.05 0.01 0.05*

RP-VMAT 1.02 0.02 1.01 1.04

Dmax Original 53.93 0.35 53.69 54.18 0.36 (0.67 %) 0.07*

RP-VMAT 53.57 0.50 53.22 53.93

D2 % Original 53.37 0.37 53.10 53.63 0.34 (0.64 %) 0.15*

RP-VMAT 53.03 0.46 52.70 53.36

D50 %_UB Original 28.90 5.31 25.10 32.69 5.39 (18.65 %) 0.01

RP-VMAT 23.51 3.26 21.18 25.84

D50 %_FH Original 16.30 1.66 15.11 17.48 2.30 (14.11 %) 0.01

RP-VMAT 14.00 0.92 13.34 14.65

Dmean_UB Original 30.01 4.52 26.77 33.24 4.51 (15.03 %) 0.01

RP-VMAT 25.50 1.54 24.40 26.60

Dmean_FH Original 17.18 1.80 15.90 18.47 1.85 (10.77 %) 0.01

RP-VMAT 15.33 0.68 14.85 15.82

MUs Original 412 41 383 441 18 (4.37 %) 0.14

RP-VMAT 430 23 413 447

Abbreviations: HI homogeneity index, CI conformity index, Dmax global maximum dose, D2 % near maximum dose, SD standard deviation, △(%) difference between
the original and RP-VMAT plans (% relative to the original value), D50 % dose to the 50 % volume of the structure, Dmean mean dose, FH femoral head, UB urinary
bladder, MU monitor unit, RP-VMAT volumetric modulated arc therapy plans optimized by RapidPlan. Dose unit (Gy)
*Paired sample T test, otherwise Wilcoxon signed ranks test was used
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Fig. 1 Mean DVHs of 30 IMRT patients planned by experience-based (original) or knowledge-based (RapidPlan) methods regardless of the
setup orientations

Table 2 Dosimetric comparison between the clinical IMRT plans (of both supine and prone setups) and their knowledge-based
re-optimization using the DVH estimation model trained on supine VMAT plans

Mean SD 95 % Confidence intervals △(%) P

Lower Upper

HI_PGTV Original 0.04 0.01 0.04 0.05 0.01 0.04

RP-IMRT 0.05 0.01 0.04 0.05

HI_PTV Original 0.25 0.01 0.24 0.25 0.01 0.01*

RP-IMRT 0.26 0.01 0.25 0.26

CI_PGTV Original 1.03 0.05 1.01 1.05 0.01 0.61

RP-IMRT 1.02 0.05 1.00 1.04

CI_PTV Original 1.01 0.02 1.00 1.02 0.17 <0.01*

RP-IMRT 1.18 0.05 1.16 1.20

Dmax Original 52.95 0.44 52.78 53.11 1.51 (2.85 %) <0.01

RP-IMRT 54.46 1.52 53.89 55.02

D2 % Original 52.61 0.43 52.44 52.77 0.15 (0.29 %) 0.09

RP-IMRT 52.76 0.51 52.57 52.95

D50 %_UB Original 33.85 2.96 32.74 34.95 8.76 (25.88 %) <0.01*

RP-IMRT 25.09 1.32 24.59 25.58

D50 %_FH Original 15.65 3.33 14.41 16.90 1.92 (12.27 %) <0.01*

RP-IMRT 13.73 1.43 13.19 14.26

Dmean_UB Original 33.99 2.77 32.95 35.02 7.74 (22.77 %) <0.01

RP-IMRT 26.25 1.22 25.79 26.70

Dmean_FH Original 16.26 2.74 15.24 17.28 1.64 (10.09) <0.01

RP-IMRT 14.62 1.10 14.21 15.04

MUs Original 805 82 774 836 394 (48.94 %) <0.01*

RP-IMRT 1199 80 1169 1229

Abbreviations: HI homogeneity index, CI conformity index, Dmax global maximum dose, D2 % near maximum dose, SD standard deviation, △(%) difference between
the original and RP-VMAT plans (% relative to the original value), D50 % dose to the 50 % volume of the structure, Dmean mean dose, FH femoral head, UB urinary
bladder, MU monitor unit, RP-IMRT intensity modulated radiotherapy plans optimized by RapidPlan. Dose unit (Gy)
*Paired sample T test, otherwise Wilcoxon signed ranks test was used
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global maximum dose. In addition, more cases (6/30 pa-
tients) with larger V107 % values were observed in the
RP-IMRT group (ranging from 0.01 ~ 1.76 %, not shown
in Table 2) than in the original plans (hardly noticeable).

Supine vs. prone setup orientations
Conflict was not encountered during the optimization of
prone patients using the supine model. Table 3 com-
pares the dosimetric outcomes between the supine and
prone patients. Regarding the HI and CI of the targets,
no or slight disparities were observed between the two
setups for any planning methods. The absolute inter-
orientation dose differences of Dmax, D2 %, D50 %_UB and
Dmean_UB were no more than 0.41 Gy. Prone patients re-
ceived significantly lower D50 %_FH and Dmean_FH in both
original and RP-IMRT plans.

Discussion
To appraise the contribution of the new PO optimizer,
the RapidPlan-generated objectives were applied to the
10 VMAT validation plans using the old PRO optimizer,
and the results were more close to the RP-VMAT than
the original plans. Therefore, without changing any

settings other than redesigning the MLC sequences, the
dosimetric changes of knowledge-based re-optimization
were mostly if not solely attributable to the estimates
and objectives generated by the RapidPlan model based
on patient-specific evaluations of structure sets and field
geometry. However, as a key component of RapidPlan
solution package, the minor role of the possible stronger
PO algorithm cannot be excluded, which may deserve
more investigations in the future.
Consistent with the published successful implementa-

tions of RapidPlan models to prospective patients of the
same type [12–17],our supine VMAT model could gen-
erate clinically acceptable plans for similar validation pa-
tients as it was configured for. Comparable target dose
homogeneity and conformity were achieved, but the
dose to the critical organs was largely reduced than the
clinical VMAT plans that were developed manually
(Table 1). As a new attempt of extending the model ap-
plication domain, significant improvement of critical
organ sparing was also achievable by the model precon-
figured on another technique and orientation (Table 2
and Fig. 1). Using the same model, RP-IMRT achieved
greater improvement magnitudes of D50 %_UB and

Table 3 Dosimetric statistics between the supine and prone IMRT patients

Original RapidPlan

Mean SD 95 % CIs △(%) P Mean SD 95 % CIs △(%) P

HI_PGTV S. 0.04 0.01 0.04 ~ 0.05 0 0.66* 0.05 0.01 0.04 ~ 0.05 0 0.97

P. 0.04 0.01 0.04 ~ 0.05 0.05 0.01 0.04 ~ 0.06

HI_PTV S. 0.24 0.01 0.24 ~ 0.25 0.01 0.24* 0.25 0.01 0.25 ~ 0.26 0.01 0.22*

P. 0.25 0.01 0.24 ~ 0.25 0.26 0.02 0.25 ~ 0.26

CI_PGTV S. 1.03 0.07 0.99 ~ 1.09 0.01 0.73 1.01 0.06 0.97 ~ 1.05 0.01 0.48

P. 1.02 0.05 1.00 ~ 1.04 1.02 0.05 0.99 ~ 1.04

CI_PTV S. 1.02 0.02 1.00 ~ 1.04 0.01 0.16 1.19 0.07 1.14 ~ 1.24 0.01 0.56*

P. 1.01 0.02 1.00 ~ 1.02 1.18 0.05 1.16 ~ 1.20

Dmax S. 52.93 0.45 52.61 ~ 53.25 0.03 (0.06 %) 0.98 54.73 1.67 53.53 ~ 55.93 0.41 (0.75 %) 0.48

P. 52.96 0.45 52.75 ~ 53.17 54.32 1.46 53.64 ~ 55.00

D2 % S. 52.56 0.41 52.26 ~ 52.85 0.07 (0.13 %) 0.68* 52.71 0.24 52.53 ~ 52.88 0.08 (0.15 %) 0.86

P. 52.63 0.45 52.42 ~ 52.84 52.79 0.61 52.50 ~ 53.07

D50 %_UB S. 34.13 2.73 32.16 ~ 36.06 0.41 (1.20 %) 0.74* 25.12 0.84 24.52 ~ 25.72 0.05 (0.20 %) 0.93*

P. 33.72 3.12 32.26 ~ 35.18 25.07 1.53 24.36 ~ 25.79

D50 %_FH S. 18.89 2.69 16.96 ~ 20.81 4.85 (25.67 %) <0.01* 14.67 1.80 13.38 ~ 15.95 1.41 (9.61 %) 0.01*

P. 14.04 2.28 12.97 ~ 15.11 13.26 0.94 12.82 ~ 13.70

Dmean_UB S. 34.25 2.90 32.17 ~ 36.32 0.39 (1.14 %) 0.72* 26.19 0.97 25.50 ~ 26.89 0.08 (0.31 %) 0.87*

P. 33.86 2.77 32.56 ~ 35.15 26.27 1.36 25.64 ~ 26.91

Dmean_FH S. 19.23 2.41 17.51 ~ 20.96 4.45 (23.14 %) <0.01 15.41 1.07 14.64 ~ 16.17 1.18 (7.66 %) <0.01*

P. 14.78 1.31 14.17 ~ 15.39 14.23 0.91 13.81 ~ 14.66

Abbreviations: S. supine, P. prone, HI homogeneity index, CI conformity index, △(%) difference between the supine and prone plans (% relative to the supine
value), Dmax global maximum dose, D2 % near maximum dose, SD standard deviation, 95 % CI 95 % confidence interval, D50 % dose to the 50 % volume of the
structure, Dmean mean dose, FH femoral head, UB urinary bladder. Dose unit (Gy)
*Independent sample t-test, otherwise Mann-Whitney U test was used
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Dmean_UB than RP-VMAT plans, yet the decreasing am-
plitudes of D50 %_FH and Dmean_FH were slightly to the
opposite. Therefore, the VMAT model did not necessar-
ily work better in the similar technique than in the dif-
ferent, which can be very helpful in detecting and
improving the sub-optimal manual IMRT plans. As a re-
sult of knowledge-based re-optimization of both IMRT
and VMAT plans, the decreasing amplitudes of the dose
to the urinary bladder were much larger than that to the
femoral head. We ascribed this different magnitude to
the greater geometric varieties of urinary bladder, which
have made the experience-based subjective judgement of
achievable goals more challenging in the conventional
planning. Some unreliable decisions could be avoided by
RapidPlan using the personalized quantitative evaluation
algorithm, hence reducing unnecessary normal tissue
complication risks associated with suboptimal planning
[20]. Additional evidences of reducing inter-planner var-
iety using knowledge-based planning were the smaller
standard deviations and narrower 95 % confidence inter-
vals of the dose metrics to the critical organs (Tables 1,
2 and 3), which is also consistent with pervious observa-
tions on other cancer types [5–11].
As shown in Fig. 1, the nearly overlapped lines of

GTV, PGTV, CTV and PTV of the original and RP-
IMRT plans indicate that the aforementioned compari-
sons of organ sparing are based on similar target dose
coverage after renormalization. Slight but considerable
sharper dose gradient in the transitional region from
PGTV to PTV can be observed in the RP-IMRT plans
(approximately between the dose range of 42 ~ 49 Gy),
which can be ascribed to the fact that ‘PTV-(PGTV +
5 mm)’ was included as an ‘organ-at-risk’ (rather than a
‘target’) in the model configuration which generated
upper constraints for this structure in the knowledge-
based IMRT planning to shape a good dose fall-off. The
volume of ‘PTV-(PGTV + 5 mm)’ was created by
deducting PGTV and its 5 mm outer margin from PTV,
which was also optimized during the manual planning.
As shown in Table 2, the significantly increased CI_PTV

of RP-IMRT plans indicated deteriorated dose fall-off
beyond the border of PTV, which might not be the ‘fault’
of the DVH-estimation model though. Indeed, the model
itself does not generate knowledge-based predictions
and estimations for the targets. Instead, these fixed ob-
jectives shall be manually assigned and can be incorpo-
rated into the optimizer as templates to facilitate an
automated planning process. Although these combined
parameters functioned well for the automated RP-
VMAT planning, it was in line with our clinical experi-
ence that IMRT optimization usually adopts different
constraints and priorities than the VMAT especially for
the target dose coverage and hot volume control. Al-
though this study focused on the feasibility and

dosimetric evaluation of cross-applying the identical RP-
VAMT optimizer, it is advisable to investigate the target-
objective revision to better readapt the VMAT optimizer
to the IMRT planning, and to test the capability of
IMRT model in the knowledge-based VMAT planning
in the future.
The increased Dmax and V107 % of RP-IMRT plans may

be associated with the significantly more MUs than the
original plans. As a comparison, the MU escalation of
RP-VMAT plans was minor, where the hot spot did not
increase considerably (it is also true that VMAT tech-
nique is less likely to produce hot spots than IMRT).
Moreover, emerging hot spots were usually segmented
timely and suppressed with high priority during the iter-
ation of conventional optimization, and/or manually
erased by editing the fluence map afterwards [21]. These
steps were all missing during the semi-automated
knowledge-based optimization. Therefore, manual exam-
ination and elimination of hot spot is highly recom-
mended especially for other treatment regions involving
serial organs at risk.
As shown in Table 3, the impact of setup orientations

on the dosimetric outcomes of RP-IMRT plans was very
tiny: the differences of HI_PGTV, HI_PTV, CI_PGTV, CI_PTV,
Dmax, D2 %, D50 %_UB and Dmean_UB between the prone
and supine patients were negligible. The magnitudes of
inter-setup variances were comparable to that of the ori-
ginal plans. The comparable results of knowledge-based
IMRT planning between patients of opposite setups sug-
gested that orientation variety did not affect the per-
formance of a preconfigured model.
It was also noticed that the femoral head of prone pa-

tients received consistently lower dose for both original
and RP-IMRT plans, but the difference may not be at-
tributable to the orientation-disparity between the mod-
elling and planning candidates, because the supine
model has largely reduced the femoral exposure for both
supine and prone patients. An alternative explanation
was that some sub-optimal field geometry in the original
supine IMRT plans may have involved more femoral
head volume into the fields, hence induced more expos-
ure for both original and RP-IMRT plans using identical
field organizations. Nevertheless, RapidPlan reduced the
magnitude of inter-setup dose disparities of D50 %_FH

and Dmean_FH, suggesting that even under suboptimal
field arrangement (which is not optimizable by Rapid-
Plan), knowledge-based optimization still behaved super-
iorly in terms of plan quality and consistency.

Conclusions
A supine VMAT model can automatically estimate
optimization objectives for the knowledge-based IMRT
planning of either supine or prone patients, yielding su-
perior organ sparing and quality consistency than the
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conventional method. If incorporated as part of the
optimizer, the manually added objectives and priorities
for the targets should be adjusted in accordance with the
selected treatment technique. Manual processing of the
hot spots is highly recommended after the semi-
automated knowledge-based IMRT planning.
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