
RESEARCH Open Access

Investigation of a real-time EPID-based
patient dose monitoring safety system
using site-specific control limits
Todsaporn Fuangrod1*, Peter B. Greer2,4, Henry C. Woodruff3, John Simpson2,4, Shashank Bhatia4,
Benjamin Zwan2,5, Timothy A. vanBeek6,7,8, Boyd M.C. McCurdy6,7,8 and Richard H. Middleton1

Abstract

Purpose: The aim of this study is to investigate the performance and limitations of a real-time transit electronic
portal imaging device (EPID) dosimetry system for error detection during dynamic intensity modulated radiation
therapy (IMRT) treatment delivery. Sites studied are prostate, head and neck (HN), and rectal cancer treatments.

Methods: The system compares measured cumulative transit EPID image frames with predicted cumulative image
frames in real-time during treatment using a χ comparison with 4 %, 4 mm criteria. The treatment site-specific
thresholds (prostate, HN and rectum IMRT) were determined using initial data collected from 137 patients (274 measured
treatment fractions) and a statistical process control methodology. These thresholds were then applied to data from
15 selected patients including 5 prostate, 5 HN, and 5 rectum IMRT treatments for system evaluation and classification
of error sources.

Results: Clinical demonstration of real-time transit EPID dosimetry in IMRT was presented. For error simulation, the system
could detect gross errors (i.e. wrong patient, wrong plan, wrong gantry angle) immediately after EPID stabilisation;
2 seconds after the start of treatment. The average rate of error detection was 7.0 % (prostate = 5.6 %, HN= 8.7 %
and rectum= 6.7 %). The detected errors were classified as either clinical in origin (e.g. patient anatomical changes), or
non-clinical in origin (e.g. detection system errors). Classified errors were 3.2 % clinical and 3.9 % non-clinical.

Conclusion: An EPID-based real-time error detection method for treatment verification during dynamic IMRT has been
developed and tested for its performance and limitations. The system is able to detect gross errors in real-time, however
improvement in system robustness is required to reduce the non-clinical sources of error detection.
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Background
In vivo dosimetry using an electronic portal imaging de-
vice (EPID) has been investigated and implemented clin-
ically to improve the quality of treatment and safety
during external beam radiotherapy (EBRT) [1–3]. This
has been shown to be of particular benefit to modern
dynamic delivery techniques such as intensity modulated
radiation therapy (IMRT) and volumetric modulated arc
therapy (VMAT) as well as for hypo-fractionated

deliveries, for example stereotactic body radiation ther-
apy (SBRT). These dynamic delivery techniques involve
the delivery of non-intuitive fluences and multi-leaf col-
limator (MLC) trajectories as well as dose rate and, in
the case of VMAT, gantry rotation modulations in order
to achieve a highly conformal three-dimensional dose
distribution within the patient. Due to the added com-
plexity, pre-treatment quality assurance (QA) for EBRT
has been the focus of many recent studies [4–8].
However, there is still the potential for random and sys-
tematic delivery uncertainties, at each fraction of the
treatment course. Traditional pre-treatment QA is un-
able to detect these types of errors which are unique to
each fraction, for example, patient anatomy changes,
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undetected machine errors, inadequate immobilisation
and human error (e.g. accidental plan modification, in-
correct treatment site or plan/patient, etc.) [2, 9, 10].
The Netherlands Cancer Institute have fully replaced

pre-treatment verification with 3D EPID-based in vivo
dosimetry. In their system, the delivered dose is verified
offline by comparing the planned and reconstructed 3D
dose distributions using a gamma evaluation with a 3 %/
3 mm acceptance criteria [11]. Three key parameters,
mean gamma (γmean), 99

th percentile gamma (γ1%), and
dose different at isocenter (ΔDiso), were employed to de-
tect dose delivery errors. They defined the tolerance
levels as γmean > 0.5, γ1% > 2, and ΔDiso > 3 %, and the ac-
tion levels were γmean > 1, γ1% > 4, and ΔDiso > 5 % [5].
This work has demonstrated that offline in vivo EPID-
based dosimetry has the ability to provide clinically
useful information regarding the accuracy of the dose
delivered to each patient at each individual treatment
fraction. It has also been shown that, using automation,
this can potentially be less time consuming than trad-
itional phantom-based pre-treatment QA.
Whilst offline in vivo dosimetry does improve the abil-

ity to detect delivery errors, it is still limited in its cap-
acity to prevent errors before clinically significant errors
occur [12]. This is of particular significance for hypo-
fractionated deliveries, where detected errors cannot be
compensated for in subsequent fractions. Real-time in
vivo EPID dosimetry has the potential to not only detect,
but also to prevent clinically significant dose delivery er-
rors. We have developed the first system where transit
EPID images frames are acquired and compared to pre-
dicted image frames in real-time during the delivery of
dynamic EBRT [13, 14]. In this system a 4 %/4 mm Chi
(χ) comparison (a computationally efficient implementa-
tion of the γ comparison [11]) was used to compare (a)
each individual frame of the measured and predicted im-
ages (b) the cumulative measured and predicted image
frames. Previously, an arbitrary low threshold level was
used with the aim of detecting gross delivery errors
(50 % pass rate for the frame-by-frame comparison and
60 % for the cumulative comparison). An appropriate
threshold level for optimal error detection using real-
time transit EPID dosimetry has not yet been
determined.
Statistical process control (SPC) techniques have been

introduced for QA in radiation therapy, allowing for a
more rigorous approach to monitoring variation within
a system [15, 16]. SPC has the ability to separate system-
atic and random errors within a system of measure-
ments, while the traditional methods, using standard
deviation cannot. For example, Gerard et al. [17] applied
SPC to detect significant random variations and used
performance capability indices to evaluate pre-treatment
IMRT QA for head-and-neck and prostate plans. This

methodology can be applied to the analysis of real-time
transit EPID dosimetry where historical treatment data
can be used to detect errors (i.e. significant changes in the
system) during the treatment. The term “error” is used
loosely here to represent any treatment deviation that is
detected by the system including those due to random
and systematic anatomical changes in the patient, machine
malfunctions and real-time verification system failures.
In this paper treatment site-specific control limits for

error detection have been developed based on measured
transit EPID image frames and predictions for a set of
137 patients using 274 measured treatment fractions.
These control limits were developed to evaluate the de-
livery and can be applied either in real-time or off-line
(i.e. after the fraction has been delivered). The aim is to
enable a systematic approach to error detection and
error classification and to assist with development of the
real-time transit EPID dosimetry system by quantifying
its performance and its limitations.

Materials and methods
Data collection and selection method
The real-time patient treatment verification system,
known as “Watchdog”, was initially operated passively
during patient treatments to acquire transit EPID im-
ages. No interventional action, or otherwise, was per-
formed during the course of the patients treatment. This
study was approved by the local human research ethics
committee. Collection of data was divided into two
phases: 1) training data collection for determining lower
control limits (i.e. thresholds or action levels), and 2)
data collection for evaluating the system performance.
To determine lower control limits (LCL) (refer to sec-

tion 2.3), the first two fractions were used for all patients
as these were closest in time to the reference condition
(simulation) and therefore less likely to experience ana-
tomical change such as weight loss and tumour shrink-
age. A similar assumption has been made in other
studies where the measured EPID images acquired from
the first fraction were used as a reference data set for
comparison throughout the following fractions [12]. The
selected data was used as “training data” and thus it was
verified that there were no substantial errors in either
the delivery, acquisition or the plan generation. Three
key constraints were used to select the training data to
ensure this. Initially, the first two fractions were selected
to determine the LCL. Secondly, any fields with final cu-
mulative χ pass rate (i.e. the pass-rate for the integrated
field) less than 97 % were also excluded. Thirdly, any
data containing known Watchdog related system errors
and/or human errors (e.g. incorrect image acquisition
process) were also excluded. These constraints resulted
in the training data consisting of 137 patient treatment
courses (18 rectum patients, 82 prostate patients, and 37
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HN patients). All treatments were planned using Eclipse
(Varian Medical Systems, Palo Alto, CA) version 11.

Watchdog: real-time EPID-based patient dose monitoring
safety system
Delivery system and image acquisition
All treatments were performed using one of four Clinac
Trilogy Linear Accelerators (linacs) (Varian Medical
Systems, Palo Alto, CA) equipped with Millenium 120-
leaf multi-leaf collimators (MLCs). Delivery was dynamic
sliding-window IMRT using 6 MV photons at nominal
dose rates of 400 MU/min. Megavoltage (MV) images
were acquired using an aS1000 EPID operating in inte-
grated acquisition mode controlled by the clinical
treatment software module within the 4D Integrated
Treatment Console (4DITC) PC. All images were
automatically dark field and flood field corrected and
were acquired with a source-to-detector distance
(SDD) of 150 cm. Access to both MV and kV indi-
vidual image frames was via camera-link cables to
ports on the 4DITC and Varian On-Board Imager
(OBI) computers. These were connected to an ancil-
lary PC equipped with a dual-base frame-grabber
card (Matrox Solios SOL 2 M EV CLB). Gantry rota-
tion angles were derived from kilovoltage (kV)
source rotation information encoded in the header
of kV “dark” image frames by the Varian OBI. Note
that the kV source was not on during acquisition of
the kV frames. Patients received no additional dose
from this study. The raw frame grabber data was re-
constructed into matrix image format using an in-
house custom Matlab/C# (MathWorks, Natick, MA,
USA) code. This system acquired both MV and kV
image frames at frame rates of 7.455 fps and 10.92
fps, respectively.

Overview of watchdog system
The Watchdog system was previously tested using clin-
ical dynamic IMRT fields delivered to an anthropo-
morphic prostate phantom [13] and was implemented
for clinical use [14]. Predicted EPID images were calcu-
lated for sequential dose increments using the physics-
based model of Chytyk et al. [18, 19]. The predicted
EPID images were generated at predetermined control
point (CP) intervals for each treatment plan file,
providing a sequence of frames for the entire beam de-
livery, as described in [13, 14]. For IMRT deliveries a
synchronization method using MLC leaf positions ex-
tracted from predicted and measured images is applied
[13]. The system was used to compare cumulative
predicted and integrated measured frames up to a
synchronization point (referred to as a cumulative image
comparison). The measured images were resized to ½
resolution (512 × 384 pixels) and 2-D comparisons were
evaluated by using a fast χ comparison with 4 %, 4 mm
criteria [20]. The system achieved a mean real-time χ
pass rate of 91.1 % for 4 %/4 mm criteria [14]. The
framework of the Watchdog system is summarised and
illustrated in Fig. 1. After acquisition and analysis the
predicted and measured EPID images are stored in a
database as well as the real-time verification result and
any manually entered comments by the operator.

Statistical process control for deriving control limits
Determination of lower control limit (LCL)
The application of SPC control limits assists in the clas-
sification of normal and assignable (special) causes of
variation in a process based on training data [21]. The
limits for this classification are set by calculating the
mean(μ) and standard deviation(σ) of a process metric
when the process is under stable operation. SPC
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Fig. 1 Watchdog system overview
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normally employs two statistical control limits and a
centre line (CL), including an upper control limit (UCL)
and a lower control limit (LCL). However, in this appli-
cation the real-time verification output (i.e. χ compari-
son pass-rate) cannot exceed 100 % so the UCL is
eliminated and only the LCL is considered.
As the linac dose-rate increases rapidly after beam-on,

the EPID central axis dose response increases rapidly
often with a small overshoot, and then stabilises after
approximately two seconds [22, 23]. To avoid this region
of dose rate instability, the method used to calculate
control limits excluded the first two seconds of treat-
ment. CLs and LCLs were determined for the cumula-
tive χ pass rate for three treatment sites; prostate,
HN, and rectum using Eqs. 1 and 2.

CLt≥2s ¼ μt≥2s; ð1Þ
LCLt≥2s ¼ μt≥2s − 3σ t≥2s; ð2Þ

Where μt≥2s is the average cumulative dose compari-
son pass-rate after two seconds of treatment, and σ t≥2s is
the standard deviation of cumulative dose comparison
pass-rate after two seconds. After that, the control chart

is constructed based on the defined LCL for the specific
treatment site.

Error detection
Monitoring using LCL alone however is sensitive to
highly transient events and therefore a second parameter
was introduced to provide improved identification of
clinically significant errors. The second parameter uses a
process evaluation technique to assist in error detection.
The process evaluation uses a process capability index
Cpml
� �

, which represents the ability of a process to pro-
duce data that meet the LCL. Using the training data
set, the process capability index is calculated using Eq. 3.

Cpml−t ¼ μt≥2s−LCL

1:46
ffiffiffiffiffiffiffiffiffiffiffi
σ t≥2s2

p þ μt≥2s−Tð Þ2 ð3Þ

Where μt and σ t are the average and the standard de-
viation of cumulative dose comparison pass-rate after
two seconds of treatment up to the delivery point. The
constant 1.46 is recommended for a one sided specifica-
tion limit [24] and T is the process target value that can
be assumed to be the average of the cumulative dose

Table 1 Sensitivity test cases and modified parameters for introducing errors into prediction model

Error Class Simulated Errors Plan modification methods

Patient position
misalignment

Patient setup errors = 5, 7, 10 mm Horizontal spatial shift of CT images data set, then recalculate predicted EPID data; only
gantry angle at zero is tested.

MU errors Increasing 5, 7, 10 % Decrease MU in treatment plan then calculate predicted EPID data; this simulates overdose
delivery to patient.

Wrong Patient or
Plan

Incorrect patient same treatment
site

Apply different patient CT data for predicted EPID data. This simulates wrong patient being
treated.

Wrong gantry
angle

Correct plan (patient) incorrect field
or wrong gantry angle

Re-ordered gantry angle in treatment plan (exchanged gantry angle between treatment
fields) then re-calculated predicted EPID data. This simulates wrong gantry angle in IMRT.

Table 2 Overview of categories of errors sources for the system and observation parameters for error classification

Error category Clinical error (Y/N)? Observation Parameters Error sources

Acquisition
error

N Number acquisition frames/average EPID pixel
offset/RTT comments

Errors during acquisition of EPID images (i.e. missing
frames, incorrect EPID calibration)

Watchdog
system error

N Synchronisation results/Difference between
integrated predicted VS measured EPID and
integrated measured EPID VS measured EPID in
different fractions

Errors caused by incorrect synchronization between
predicted and measured EPID image and inaccuracy
of predicted EPID image calculation

Watchdog
user error

N RTT comments/Number acquisition frames/
Predicted EPID plan information VS patient
information

Errors made by RTTs using Watchdog software (e.g. started
Watchdog software after beam-on, selecting wrong
predicted plan)

Transfer and
machine error

Y MLC position and trajectory [28]/Gantry angle/
Collimator angle [13]/Treatment information on
image header/Beam profile calculation

Errors during data transfer from TPS to treatment equipment
and due to malfunctioning of treatment machine (e.g.
erroneous field sizes, number of monitor units or collimator
angles entered into the treatment machine, wrong MLC leaf
positions or trajectory)

Patient
related
delivery error

Y Beam profile/Visual assessment of predicted and
measured EPID images/Normalised dose
comparison/RTTs comment

Errors caused by set-up errors or intra- and inter-fractional
organ motion and due to inaccuracies during the individua-
lised treatment (e.g. occurrence of gas pockets in the rectum,
patient weight loss, and erroneous
density correction in TPS).
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comparison pass-rate or the centre line shown in Eq. 1
[25]. Note that, there is no single ideal value of Cpml that
ensures a process is operating optimally. Typically
Cpml ¼ 1:33 is used as a lower limit for an acceptably
performing process and indicates a high quality QA
process [26].
The delivery was classified as a “fail” when both of the

following two conditions were true:

1. The real-time cumulative χ pass rate was less than
the site-specific LCL

2. The process capability index, Cpml was less than 1.33

Sensitivity testing
The sensitivity of the derived control limits to various
sources of error was tested and evaluated. This was per-
formed using two prostate patient data sets. Simulated
error classes were introduced by modifying the patient
CT scan data or treatment plan parameters, then re-
calculating the predicted EPID image set. Table 1 pre-
sents the list of test cases and simulation parameters
used for the sensitivity testing. A comparison between
the predicted and measured transit images was then per-
formed using an offline simulator of the real-time verifi-
cation system.

Classification of error sources
Five randomly selected patients for prostate, HN, and
rectum IMRT treatments were used for patient treat-
ment evaluation in this preliminary investigation. The

derived site-specific control limits were used to examine
and classify the clinical real-time verification results with
the selected patient data set including all fractions from
each treatment site. A “fail” is triggered when the individ-
ual treatment evaluation exceeds the condition of error
detection (cumulative χ comparison < LCL and Cpml <
1.33). Any failure during the verification prompted further
analysis to classify and determine the source of the error.
The capability of error detection using the system was

investigated and classified as one of two main categories;
clinical and Watchdog system related sources [27]. For
clinical error sources, there are two subcategories; pa-
tient related delivery errors and data transfer and linac
errors. Three subcategories are related to non-clinical
error sources, including EPID acquisition errors, Watch-
dog system errors, and Watchdog user errors. Observa-
tion parameters are presented in Table 2.

Results
Treatment site-specific LCLs
The derived lower control limits of prostate, HN, and
rectum IMRT were 75.6, 71.3, and 71.1 % respectively
(see Table 3). The average cumulative χ pass-rate per-
centage or centre line were 89.1, 84.0, and 80.9 % for
prostate, HN, and rectum IMRT.

Sensitivity testing
Table 4 presents the sensitivity test results with the test-
ing parameters and detection delay. The results of the
sensitivity testing showed that the system is able to de-
tect 5 % MU error, wrong patient, and wrong gantry

Table 4 Sensitivity test of four test cases

Sensitivity test cases Error parameters # test fields # error detection aDetection delay ± 1SD
(seconds)

Wrong dose delivery (MU error) +5 % 14 14 4.6 ± 1.5

+7 % 14 14 3.3 ± 0.9

+10 % 14 14 2.5 ± 0.6

Patient setup errors Shift 5 mm 6 0 N/A

Shift 7 mm 6 0 N/A

Shift 10 mm 6 1 8.7 ± 0.0

Wrong patient treatment Incorrect plan, same treatment site 10 10 Immediately detected after 2 s

Wrong gantry angle Correct plan, incorrect field/gantry angle 10 10 Immediately detected after 2 s
aDetection delay is the period from the start of treatment to the time that the system is able to detect the simulated errors. The system was designed not to take
the first 2s into account; therefore, the detection delay must greater than 2s

Table 3 Results of treatment site-specific lower control limits

Treatment type Treatment site Number of plans
or patients

Number of fields Average cumulative χ
pass-rate (%) (μ)

Lower control
limit (%) (μ-3σ)

IMRT Prostate 82 1055 89.1 75.6

IMRT Head and Neck 37 486 84.0 71.3

IMRT Rectum 18 259 80.9 71.1
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angle, however it was not sensitive to small patient dis-
placements, except in one field with 10 mm displace-
ment. Because the sliding window IMRT field aperture
characteristically starts from left and moves to the right
this means the system can exhibit a delay in detecting
dose delivery or patient setup errors depending on the
simulated error. Note that the sensitivity may vary based
on the patient anatomy, treatment field size, shape, gan-
try angle, and MLC speed. The error detection for
wrong dose delivery (MU error) is more sensitive than
setup error. For a 5 % absolute dose error the system de-
tected the error after about 23 % of treatment had been
delivered. For the gross errors including wrong patient
and wrong gantry angle the system could detect these
immediately after 2 s or after about 15 % of the treat-
ment had been delivered.

Classification of error sources
Figure 2 presents the histogram of the cumulative χ
comparison pass-rate (4 %, 4 mm) for each treatment
site. The average cumulative χ comparison pass-rates
across five patients for each site were 90.5, 87.3, and
87.3 %, for prostate, head and neck, and rectum respect-
ively. The treatment verification results were evaluated
using our defined control limits and are illustrated in
Table 5. The average percentage of errors detected under
the condition of error detection for all patients was
7.0 % (Prostate = 5.6 %, HN = 8.7 % and Rectum = 6.7 %).
Individual patients were investigated to determine the

source of errors using the parameters described in
Table 2. Only treatments where an error was detected
were evaluated (see Table 5 and Fig. 3). The average of
the clinical errors was 2.3, 4.2, 3.0 % for prostate, HN,
and rectum IMRT treatments respectively. In addition,
the average of non-clinical errors was 3.3, 4.6, and 3.8 %
for prostate, HN, and rectum IMRT treatments. There is
a large spread of detected errors between individual pa-
tients for the HN and rectum cases (Fig. 2) reflecting the
increased field sizes and greater complexity of field
shape and anatomy in the treatment field compared to
the prostate cases. Figure 3 shows the distribution of
error sources found using Watchdog and our predefined
action limits.

Discussion
The real-time treatment verification system described in
this work has been clinically implemented; however con-
trol limits were not determined and real-time interven-
tion was not previously performed [14]. The initial data
collection is used here to determine initial site-specific
control limits and examine the performance and limita-
tions of the system. The SPC method requires good
quality data i.e. without large errors in order to deter-
mine control limits. In this study, the first two fractions

from 137 patients were analysed to determine the LCL
(see Table 3). The selected fractions were reviewed to
ensure that there were no Watchdog system related er-
rors, and a low likelihood of large clinical errors. How-
ever, small clinical and non-clinical random errors may
be embedded into the training data sets. Therefore these
LCLs will not detect such errors that may occur during
clinical treatment delivery.
LCL determination requires consideration of the num-

ber of training data sets and quality of these data sets.
While the numbers of patients were limited especially
for rectum, the results of LCL were similar across the
three treatment sites. Note that, the dose comparison
criteria can be changed from 4 %, 4 mm but then the
LCL would require adaptation. For example, if the cri-
teria were 3 %, 3 mm the LCL would be decreased.
Thus, changing the dose comparison criteria does not
affect the proposed evaluation method. The use of

Fig. 2 Histogram of cumulative χ comparison pass- rate for five
patients studied for prostate (a), head and Neck (b), and rectum (c)
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Table 5 Results of error detection and classification

Treatment site Patient
no.

Number of
fractions operated
with Watchdog

Overall
%
under
control
limit

% Under condition of error detection

Clinical Non-clinical

Patient related
delivery errors

Transfer and
machine errors

Watchdog system errors Acquisition
errors

Watchdog
user errors

Prostate 1 31 4.4 % 1.9 % 0.0 % 1.5 % 0.3 % 0.8 %

2 30 6.9 % 3.7 % 0.0 % 1.8 % 0.1 % 1.2 %

3 30 4.9 % 1.7 % 0.0 % 2.7 % 0.1 % 0.5 %

4 35 6.1 % 2.5 % 0.0 % 2.1 % 0.3 % 1.3 %

5 31 5.6 % 1.6 % 0.0 % 3.4 % 0.1 % 0.4 %

Head and neck 1 29 2.9 % 1.8 % 0.0 % 0.6 % 0.3 % 0.2 %

2 32 23.7 % 11.2 % 0.0 % 8.5 % 2.5 % 1.5 %

3 33 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

4 27 7.1 % 0.9 % 0.0 % 4.7 % 0.1 % 1.4 %

5 28 9.7 % 6.8 % 0.0 % 1.4 % 0.6 % 0.8 %

Rectum 1 20 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

2 14 13.3 % 7.9 % 0.0 % 2.0 % 1.8 % 1.6 %

3 25 4.9 % 1.3 % 0.0 % 1.8 % 0.2 % 1.6 %

4 24 7.0 % 1.3 % 0.0 % 3.8 % 0.2 % 1.6 %

5 29 8.4 % 4.3 % 0.0 % 2.9 % 0.1 % 1.2 %

Fig. 3 Distribution of error sources found for prostate, head and neck, and rectum using Watchdog and the observation parameters from Table 2
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different dose comparison criteria was demonstrated and
discussed by Woodruff et al. [14].
The error detection is based on two conditions; cumula-

tive χ pass-rate and the process capability index Cpml
� �

value at frame n. Currently the cumulative χ pass-rate
cannot be used alone as it shows a high sensitivity to tran-
sient fluctuations due to synchronisation errors and
Watchdog acquisition errors. For example, Fig. 4 demon-
strates a synchronisation error causing a significant drop
in χ pass-rate at frame 35. However, the final aim is to use
the χ pass-rate on its own once the system robustness has
been improved through further software development.
Approximately half of detected errors came from non-

clinical sources (55 % of detected errors). These error
types include user errors such as failing to initiate image
acquisition, image frame acquisition errors and Watch-
dog system errors (See Table 2). The system was found
to be very sensitive to EPID calibration. This suggests
that the QA of the EPID is important and verification of
this response should be built into daily morning checks
before treatment. The main source of Watchdog system
error arises from loss of synchronisation between pre-
dicted and measured EPID images. With IMRT fields on
the Varian Clinacs, synchronisation is based on an MLC
aperture comparison method. Currently for VMAT the
synchronisation is via the gantry angle in the image
header. The false positive error detection rate is
currently too high for real-time intervention, i.e. the
specificity of the system must be improved. This is cur-
rently being addressed by development of more robust
software engineering, improved synchronisation methods,
and incorporating system self-checks into the software.

For the clinical errors (45 % of detected errors), all
were caused by patient related delivery errors and no
errors resulted from data transfer or linac delivery er-
rors. These included day-to-day variations in anatomy,
tumour shrinkage, intra-fractional motion, patient set-
up, and patient weight loss. In several of the HN IMRT
patient treatments, Watchdog was able to detect patient
weight loss. The site-specific control limits identified pa-
tient related errors occurring in 2-4 % of treatments.
The Watchdog system is designed to detect major

mistreatments in radiation therapy before substantial
dose has been delivered to the patient. This requires
real-time comparison of measured and planned delivery.
As demonstrated here with these simulations, smaller er-
rors may also be detectable with the system and SPC de-
rived limits, however these are likely to be detected later
in the delivery and would be more suited to off-line ana-
lysis. While SPC based limits were used here to investi-
gate the system performance, separate action limits for
treatment intervention will likely be required. For this
further investigation is underway to determine appropri-
ate action limits for real-time intervention based on clin-
ical significance of the errors.

Conclusion
A real-time error detection method using statistical
process control for real-time EPID based delivery verifi-
cation during dynamic IMRT has been developed and
tested with patient treatment data in this work. The se-
lected two fractions from each treatment course of 137
patients have been used to calculate the site specific
lower control limit (LCL). The combination of cumula-
tive χ comparison (less than treatment site-specific LCL)
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and process capability index (less than 1.33) is used to
develop the real-time error detection threshold. This
method was tested for sensitivity to errors using simula-
tions by either plan or CT data modification. Manual
investigation of patient detected errors was able to
distinguish the errors as either clinical or non-clinical.
Future work includes the determination of action limits
based on clinical significance of the errors, the determin-
ation of action limits for VMAT treatments and the de-
velopment of a workflow to integrate the Watchdog
system into routine clinical use.
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