
Höss et al. Radiation Oncology 2014, 9:79
http://www.ro-journal.com/content/9/1/79
RESEARCH Open Access
First experiences with the implementation of the
European standard EN 62304 on medical device
software for the quality assurance of a
radiotherapy unit
Angelika Höss1*†, Christian Lampe1†, Ralf Panse1, Benjamin Ackermann1, Jakob Naumann1 and Oliver Jäkel1,2,3
Abstract

Background: According to the latest amendment of the Medical Device Directive standalone software qualifies as
a medical device when intended by the manufacturer to be used for medical purposes. In this context, the EN
62304 standard is applicable which defines the life-cycle requirements for the development and maintenance of
medical device software. A pilot project was launched to acquire skills in implementing this standard in a
hospital-based environment (in-house manufacture).

Methods: The EN 62304 standard outlines minimum requirements for each stage of the software life-cycle, defines
the activities and tasks to be performed and scales documentation and testing according to its criticality. The
required processes were established for the pre-existent decision-support software FlashDumpComparator (FDC)
used during the quality assurance of treatment-relevant beam parameters. As the EN 62304 standard implicates
compliance with the EN ISO 14971 standard on the application of risk management to medical devices, a risk
analysis was carried out to identify potential hazards and reduce the associated risks to acceptable levels.

Results: The EN 62304 standard is difficult to implement without proper tools, thus open-source software was
selected and integrated into a dedicated development platform. The control measures yielded by the risk analysis
were independently implemented and verified, and a script-based test automation was retrofitted to reduce the
associated test effort. After all documents facilitating the traceability of the specified requirements to the
corresponding tests and of the control measures to the proof of execution were generated, the FDC was released
as an accessory to the HIT facility.

Conclusions: The implementation of the EN 62304 standard was time-consuming, and a learning curve had to be
overcome during the first iterations of the associated processes, but many process descriptions and all software
tools can be re-utilized in follow-up projects. It has been demonstrated that a standards-compliant development of
small and medium-sized medical software can be carried out by a small team with limited resources in a clinical
setting. This is of particular relevance as the upcoming revision of the Medical Device Directive is expected to
harmonize and tighten the current legal requirements for all European in-house manufacturers.

Keywords: EN 62304, Medical device software, Software life-cycle processes, EN ISO 14971, Risk management,
Implementation, In-house manufacture, Radiotherapy
* Correspondence: Angelika.Hoess@med.uni-heidelberg.de
†Equal contributors
1Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450,
69120 Heidelberg, Germany
Full list of author information is available at the end of the article

© 2014 Höss et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:Angelika.Hoess@med.uni-heidelberg.de
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Höss et al. Radiation Oncology 2014, 9:79 Page 2 of 10
http://www.ro-journal.com/content/9/1/79
Background
The European Council Directive 93/42/EEC [1] (Medical
Device Directive) covers the placing on the market and
putting into service of medical devices. Its Article 1 defin-
ition of a medical device includes the software necessary
for its proper application, while its Annex IX points out
that software, which drives or influences the use of a med-
ical device, automatically falls in the same class as the de-
vice itself, both statements mainly referring to software
embedded in electronic devices. Only the last amendment
2007/47/EC [2] of said directive clarifies the software-
related requirements by an extension of the so-called
essential requirements laid down in Annex I which are ap-
plicable to all medical devices regardless of whether they
are placed on the market or not. It states that standalone
software for diagnostic and/or therapeutic purposes is
considered a medical device, and that for medical devices
which incorporate or are software, the software must be
validated according to the state-of-the-art taking into ac-
count the principles of development life-cycle, risk man-
agement, validation and verification. As the European
state-of-the-art is represented by harmonized standards,
this implies the application of the EN ISO 13485 standard
[3] on quality management systems for medical devices,
the EN 62304 standard [4] on medical device software
life-cycle processes and the EN ISO 14971 standard [5] on
the application of risk management to medical devices to-
gether with the IEC/TR 80002-1 technical report [6] pro-
viding guidance on its application to medical device
software (Figure 1). Although medical software has been
written and applied for at least three decades, the first edi-
tion of the EN 62304 standard harmonized in 2008 is the
 Management

EN ISO 1
Quality Mana

EN ISO 1
Risk Manag

Process Standards

EN 62304
Software Life-Cycle

IEC/TR 80002-1
Software Risk Management

requires

req
u

ires

93/42/EEC amended
Medical Device

affects

Development and
of Safe and Reliable M

req
u

ires
affects

Figure 1 Relationship of EN 62304 to other standards. Compliance wit
management system and the application of usability engineering. Adheren
with the Medical Device Directive.
first standard dealing with standalone software (before, all
software fell within the scope of the EN 60601-1-4 stand-
ard [7] on programmable electrical medical systems).
The Heidelberg Ion-Beam Therapy Center (HIT) [8-13]

opened in November 2009 is the first hospital-based cen-
ter in Europe where patients are treated with both protons
and carbon ions in active beam application/raster scan-
ning technique [14]. Two treatment rooms are equipped
with a fixed horizontal beamline, while a third treatment
room has a 360° rotational beam delivery system (gantry)
which moves around the patient. As the Heidelberg
University Hospital is not only the operator and user but
also the manufacturer of the facility, it is in the position to
advance this innovative and sophisticated technology in-
stead of being confined to studying the efficacy of its clin-
ical application at a fixed development stage. One of the
core competencies required for this venture is the devel-
opment of medical software compliant with state-of-the-
art standards. Therefore, a pilot project was launched and
carried out by a team of computer scientists, engineers
and medical physicists aimed at the acquisition of the
tools and techniques to efficiently implement the EN
62304 standard. The subject of this project was the devel-
opment of a standalone decision-support software used
during the quality assurance (QA) of treatment-relevant
beam parameters. The software determines, on the basis
of changes in the parameter settings of the device control
units, which beam parameters were changed and subse-
quently suggests which QA procedure(s) should be carried
out and passed before patient treatment is resumed after
accelerator maintenance and/or beam adjustments. As it
is intended to be used together with the HIT facility, and
Standards

3485
gement

4971
ement

EN 62366
Usability Engineering

requires

 by 2007/47/EC
 Directive

 Maintenance
edical Software

req
u

ires
affects

h the EN 62304 standard requires a quality management system, a risk
ce to the applicable standards results in a presumption of conformity

Höss et al. Radiation Oncology 2014, 9:79 Page 3 of 10
http://www.ro-journal.com/content/9/1/79
considered necessary for its proper application, it is a
medical device in its own right to which the EN 62304
standard is applicable. In this paper we report on our first
experiences with the implementation of said standard for
this particular piece of in-house software.

Methods
General requirements of EN 62304
The EN 62304 standard outlines minimum requirements
for each stage of the software life-cycle and defines the
activities and tasks to be performed to provide adequate
confidence that the software is safe and reliable. It intro-
duces a risk-based approach – Class A through C where
a failure of Class C software could result in death or ser-
ious injury – which ensures that medical device software
including third party components, so-called Software of
Unknown Provenance (SOUP), is subjected to a risk
management correspondent to its hazard potential.
Compliance with the standard is achieved, if the pre-

defined requirements for the applicable software safety
class have been verifiably implemented, whereby there is
a major difference in the requirements and thus in terms
of time and costs between Class A and Class B code. Al-
though the EN 62304 standard focuses on the software
development process, which includes activities like de-
velopment planning, requirements analysis, architectural
design, unit implementation and verification, integration
and integration testing, system testing and software re-
lease, no specific software development model like the
V-Model or the Waterfall Model is requested.
The software maintenance and problem resolution

processes are likewise important to enable the fast and
efficient roll-out of software updates or patches and to
address software errors detected after release. Another
central demand of the standard is the traceability be-
tween software requirements including risk mitigations
and system testing throughout the software and docu-
mentation while simultaneously providing a link be-
tween the different life-cycle phases. Well-integrated
tools like a version control system, an issue tracking sys-
tem and an automated build system can simplify and
partially automate the implementation of substantial
parts of the EN 62304 standard.

Risk management according to EN ISO 14971
The safety and effectiveness of medical device software
is dependent on the fulfillment of its intended use with-
out causing unacceptable risks. The EN 62304 standard
therefore requires compliance with the EN ISO 14971
standard which details the requirements for risk man-
agement to determine the safety of a medical device dur-
ing the product life-cycle. Basically, the manufacturer
has to establish an ongoing process to identify hazards,
evaluate and control the associated risks and monitor
the effectiveness of the controls. By evaluating the prob-
ability of the occurrence of harm and combining it with
the severity of that harm, a measure of risk can be esti-
mated. This value is compared to the manufacturer’s
device-specific risk acceptance criteria, and if it is not in
the acceptable range the risk needs to be mitigated by
the implementation of one or more control measures
which reduce the residual risk to an acceptable level.
The EN ISO 14971 standard defines a hierarchy of

control measures, i.e. inherent safety by design should
be preferred to protection measures in the device or its
manufacture which in turn should be preferred to the
provision of safety information to users. Objective evi-
dence has to be provided that the selected control mea-
sures are implemented and effective, and it has to be
ascertained that no known risks are increased and/or
new risks are introduced by their implementation.
All documents required by the EN ISO 14971 standard

are part of the risk management file the main purpose of
which is to provide traceability for each identified hazard
to the risk analysis, the risk evaluation, the implementa-
tion and verification of the control measures and the as-
sessment of the acceptability of any residual risk(s). A
preliminary endpoint of risk management is reached, if
the overall residual risk is acceptable and an appropriate
procedure is in place to obtain production and post-
production information which has to be analyzed on a
regular basis to determine if corrective or preventive ac-
tion is required to fix a problem. If risks are greater than
evaluated or new risks arise, the risk analysis has to be
updated. Of course, this is also required if the medical
device itself or its intended use is modified over the
course of time.

Purpose of the QA software under discussion
To deliver the pre-calculated therapeutic dose to the
patient-specific target volume, all beam-influencing de-
vices in the beamline of the HIT facility must be adjusted
such that the requested ion type can be transported and
accelerated from the source to the selected treatment
room with the desired beam characteristics. Therefore, the
accelerator control system (ACS) has to provide the con-
trol units of the participating devices with the required
beam parameters. The valid beam parameter ranges are
shown in Table 1.
The 177 device control units (DCUs) basically consist

of network-enabled embedded controllers with real-time
capabilities and both random access memory (RAM)
and flash memory to store all device parameters for dif-
ferent combinations of machine (= ion type), energy,
focus and intensity (MEFI). While the device parameters
for all MEFI combinations (MEFI data) for experimental
modes are stored in volatile RAM which can be changed
on the fly, the MEFI data validated for patient treatment

Table 1 Beam parameters used for patient treatment

Parameter Steps Ion type

Protons Carbon ions

Energy 255 48 – 221 MeV/u 88 – 430 MeV/u

Focus (FWHM) 1 (protons)/4 (carbon ions) 8 – 32 mm 6 – 12 mm

Intensity 9 (protons)/8 (carbon ions) 1·108 – 3·1010 1/s 1·107 – 1·108 1/s

Gantry angle 360° The gantry angle can be changed with a resolution of 0.01°;
36 steps are used for the interpolation of the settings

Höss et al. Radiation Oncology 2014, 9:79 Page 4 of 10
http://www.ro-journal.com/content/9/1/79
are contained in the flash memory of each DCU respect-
ively. Based on the required beam characteristics, which
are represented by dedicated MEFI combinations, and
the current operating mode the DCUs select the suitable
device parameters. The ACS contains functionality
which allows an export of the MEFI data currently
stored in the RAM or flash memory of all DCUs in Ex-
tensible Markup Language (XML) format (Figure 2).
The latter is referred to as “flashdump”. Currently, the
size of each MEFI export file is about 500 MB. If an ad-
justment of beam parameters for patient treatment is
required, e.g. for beam optimization after accelerator
maintenance, it has to be applied and tested in the RAM
first and then transferred (“flashed”) into the flash mem-
ory. The nature and extent of the subsequent validation
of the flashed MEFI data depends on the modified de-
vices and their respective beam influence.
To extract this information, a dedicated software called

FlashDumpComparator (FDC) has been developed which
not only compares the last and current flashdump, but
also suggests based on the beam influence of the modified
device(s) if and which QA procedure(s) should be carried
out and passed in which treatment room(s) before clinical
operation is resumed. These QA procedures include but
are not limited to checks of the energy, focus, intensity
ACS
Accelerator Contr

Ethern

DCU
Device Control Unit

RAM Flash

Timing Master

DCU
Device Control U

RAM Flash

Real-Time

MEFI
data

Figure 2 ACS-DCU connectivity. The MEFI data are sent from the ACS ov
real-time bus system. An export of the MEFI data currently stored in the RA
and position of the beam. By using the FDC, the time re-
quired for QA is greatly reduced from approximately
48 hours (all beam parameters, all treatment rooms) to a
few hours at the maximum (modified beam parameters,
affected treatment rooms) so that beam adjustments and
subsequent QA can be carried out without interruption of
patient treatment. Due to its intended use and indirect
impact on treatment quality through automated test selec-
tion the FDC was developed, tested and released accord-
ing to the EN 62304 standard.

Selection and integration of software tools
The requirements of the EN 62304 standard regarding
the software maintenance and problem resolution pro-
cesses are difficult to implement without proper tools,
although this is not imperative. Therefore, a considerable
amount of time was spent on the selection and integra-
tion of compatible state-of-the-art tools supporting those
processes. Figure 3 shows the composition of the utilized
tools. They are freely available and have interfaces which
reduce the dependency on their long-term availability.
As these software tools are not part of the FDC the level
of concern is generally low, nevertheless all used func-
tionality was independently validated (i.e. by a computer
scientist separate from the development team).
ol System

et

...nit

DCU
Device Control Unit

RAM Flash

 Bus

er an ethernet connection to the DCUs which are interconnected by a
M or flash memory of all DCUs can be obtained in XML format.

Jenkins
Continuous Integration

Redmine
Project Management

CMake
Build System

Doxygen
Documentation Tool

Git
Version Control System

Figure 3 Composition of utilized tools. The code base is stored in
Git (repository). Redmine is used to display and track differences of
individual revisions of the source files, while Jenkins has access to
Git to obtain the latest development state to automatically start
build processes and extract documentation.

Höss et al. Radiation Oncology 2014, 9:79 Page 5 of 10
http://www.ro-journal.com/content/9/1/79
Redmine is a role-based project management system
which can be used for issue tracking, forums, wikis, re-
pository browser, news and file management. It can
handle multiple projects and is excellently scalable. Its
features are modules which can be enabled or disabled
for each project, and it has an interface to add func-
tionalities by plugins. Jenkins is a web-based system
which provides continuous integration for software de-
velopment. It is expandable by a large number of plu-
gins which can be used to adapt it to the own
requirements for a suitable build process. Git is used
as version control system and contains the source code
and other files required during the build process. It be-
longs to the group of decentralized version control
tools which means that each user has a copy of the
complete repository with the entire history. Jenkins re-
quires access to the Git repositories to obtain the latest
development state to automatically start build pro-
cesses. The repository browser of Redmine uses Git to
display and track differences of individual revisions of
the source files.
CMake and Doxygen are supporting tools which are used

by Jenkins before and after the build process. CMake is a
cross-platform build system to control the software builds
by platform-independent script files. With these script
files, native make files and projects for integrated devel-
opment environments like Microsoft Visual Studio can
be generated. Doxygen extracts documentation from
source files comments which are present in a particular
syntax. The produced documentation can be provided
as HyperText Markup Language (HTML) or Portable
Document Format (PDF).
Results
Risk analysis
A rapid prototyped version of the FDC written in C++
was used as the basis for the requirements analysis by an
interdisciplinary 6-person team of accelerator physicists,
computer scientists, medical physicists and software tes-
ters which was subsequently turned into a requirements
specification. All requirements were itemized in tabular
form with unique IDs to facilitate the identifiability and
traceability of each requirement, and the complete re-
quirements specification was subjected to an informal
review against a checklist to ascertain comprehensibility,
verifiability and consistency.
Subsequently, a risk analysis was carried out to deter-

mine, if risks above the acceptance level arose from the
specified requirements and/or if any additional require-
ments resulted from the necessity to mitigate risks. The
definition of the risk acceptance criteria (categories for se-
verity and occurrence) was based on the assumption that
100 patients are treated per day in a time interval of
25 years and the FDC is applied 10 times per year at the
maximum. The underlying worst case scenario is a false
negative result of the FDC, i.e. the indication on the FDC
result print that no QA is required although at least one
beam parameter is out of tolerance which catastrophically
(= death or serious injury) affects the treatment of all sub-
sequent patients. The examples of software causes listed
in Annex B of the IEC/TR 80002-1 report were used to
generate a list of hazards which were considered during
the risk assessments to achieve completeness.
The functions of the FDC discussed in the risk ana-

lysis – one after another for each phase of the software
life-cycle – were derived from an activity diagram (Unified
Modelling Language (UML) representation) of the FDC
workflow. Figure 4 shows a simplified version of this activ-
ity diagram. First, there is a check if the input parameters
and files are processable. Then, an XML validation is per-
formed to check the MEFI export files against a prede-
fined XSD (XML Schema Definition) file. If this validation
is successful, the last and current flashdump are compared
and a beam parameter checklist including the detected
differences is stored to a file. In case of an error, the
program execution is terminated. If the ignore flag is
set, the FDC continues in spite of validation errors, but
only the detected differences and no beam parameter
checklist are printed. In total, the time required for risk
assessments prior to the first release of the FDC was
87.25 person hours.

Risk mitigations
In the risk analysis error causes like wrong startup flags,
knowledge base and output filters, contentswise or syntac-
tically wrong flashdumps, dysfunctional SOUP (a Windows
Server 2008 and the XML parser library Xerces), the impact

basic input check

[input check successful]

abortXML validation

compare MEFI export files

[else]

start

end

[ignore flag set]

[validation error]

[else]

output
beam parameter checklist

[else]

input check

Figure 4 UML representation of FDC workflow. If the input parameters and MEFI export files are processable, an XML validation is performed
which can be skipped for research purposes. If this validation is successful, the last and current flashdump are compared and a beam parameter
checklist including the detected differences is stored to a file.

Höss et al. Radiation Oncology 2014, 9:79 Page 6 of 10
http://www.ro-journal.com/content/9/1/79
of the operational environment and errors introduced dur-
ing release and maintenance were addressed. The highest
initial risk scores were attributed to the comparison of iden-
tical or outdated flashdumps, programming errors and in-
correct entries of device properties in the knowledge base.
The counteracting system design mitigations included

the addition of metadata, timestamps and checksums to
the flashdumps, their XSD validation, the recording of each
flash procedure by the ACS, a matching of DCU entries in
flashdumps and knowledge base, the abortion of the FDC
on errors and some functionalities of the tools provided by
the integration server (e.g. revision control, automated
builds, regression tests, static code analysis). The safety
information mitigations consisted of procedural and
operating instructions. Of course, system testing against
the requirements specification (i.e. 63 test cases covering
the range of functions and the software performance) and
acceptance testing by a medical physics expert were also
required quality assurance mitigations as was usability
testing against the instructions for use. The latter con-
firmed that a dedicated FDC user training was not required
as a risk mitigation.
Besides, a software maintenance and problem resolution

process was established which also allows for changes of
the FDC software and/or beam-influencing devices. In total,
38 control measures were implemented according to the
four-eye-principle, and their effectiveness was additionally
verified by an external auditor. For the first release of the
FDC, the time required for the realization of the risk miti-
gations – which included a considerable amount of soft-
ware reengineering and verification/validation – added up
to 240 person days, while the sample audits of the corre-
sponding objective evidence took 26.5 person hours only.
Provided that all those control measures are fully imple-
mented and long-term effective the overall residual risk
when using the FDC is acceptable.

Höss et al. Radiation Oncology 2014, 9:79 Page 7 of 10
http://www.ro-journal.com/content/9/1/79
Software development
The actual software development started with the outlin-
ing of development guidelines and the definition of a
procedure model. Essentially, it is based on the V-Model
except for some iterative portions which result from the
consideration of other standards (e.g. the EN 62366 [15]
standard on the application of usability engineering to
medical devices) and the chosen integration technique.
We opted for the V-model because the activities and
their dependencies according to the EN 62304 standard
can easily be mapped to it. Regarding software configur-
ation management basic provisions were established
concerning version control, usage of repositories, dealing
with SOUP and change control. A tripartite software
version number was specified which is automatically in-
corporated in the source code during the software build
process. By assigning a revision number to incrementally
different versions the software can be tracked to a
unique development state which facilitates the locating
and fixing of bugs. The guideline regarding the usage of
repositories with the version control system Git defines
which classes of files may be stored in which directories
of the repository. The repository contains all source code
and other files required to create the software and per-
form automatic tests. The SOUP integrated in the FDC
is referenced as well in order to document automatically
and comprehensively which version of SOUP is con-
tained in which version of the FDC.
From a risk management perspective it is also required

to review and assess the error lists of SOUP manufac-
turers on a regular basis to mitigate SOUP-induced risks
as may be necessary. The software maintenance and prob-
lem resolution process ensures that proposed changes to
the FDC (bug fixes or functional expansions) are imple-
mented in a coordinated manner which includes a review
and approval of each change, possibly an update of the
risk analysis and/or the documentation (requirements
specification, test specification, user manual etc.), a suit-
able amount of regression testing and the release of a
new version.
Software context and testing
Large parts of the software architecture were adopted
from the initial FDC prototype. As the FDC is not only
the subject of a risk analysis, but also the basis for a risk
mitigation (verification of newly flashed MEFI data prior
to the resumption of clinical operation) often used
within the risk analysis of the HIT facility, the software
safety class B of the FDC was derived from the risk
scores applied in the superordinate risk analysis. A de-
composition of the FDC into several software items,
which could have been classified separately, was not car-
ried out as no benefit was expected due to the size of
the FDC (about 8400 lines of code) and the chosen soft-
ware architecture.
While UML was used for the visualization of the soft-

ware architecture, the documentation of the interfaces
among the software units was realized by using source
code embedded comments which were extracted during
the build process to create an Application Programming
Interface (API) document in PDF. Due to the continuous
integration services provided by Jenkins the software
build process is automated. Besides, a static code ana-
lysis, coding style checks and regression tests are carried
out during each build, and their results are summarized
on the dashboard of Jenkins.
A new version of the FDC may only be released if

there are no unchecked errors resulting from the static
code analysis. Due to the regression tests the crucial
FDC functions are automatically tested after each code
change. A higher level of testing is realized by the sys-
tem test which includes test cases covering all func-
tional and non-functional requirements as well as
negative test cases (e.g. using invalid input). The system
test documentation includes but is not limited to the test
case specification – test cases and procedures and their
links to the requirements specification via a unique ID –
and the respective test results. A priority (1-3) is
assigned to each test case, and it is defined in the system
test documentation which tests with which priority need
to be passed for a major and minor FDC release. Usabil-
ity testing was carried out in the form of participatory
observation meaning that an unbiased person was re-
quired to perform a set of predefined tasks with the help
of the instructions for use only. As a consequence, many
options (startup flags) were dropped, conflated and
renamed to increase the usability of the FDC.

Requirements traceability
One of the objectives of the pilot project was to work
paperless whenever this was reasonable and feasible.
Therefore, the issue tracking system of Redmine is used
by the software maintenance and problem resolution
process and the risk management process. The informa-
tion about a change request or risk mitigation is stored
in a ticket. Different types of tickets, so-called trackers,
were defined according to their objectives, e.g. error,
new feature, improvement, task (code-independent) and
risk mitigation. A ticket is created via a tracker-
dependent input mask which requires information like
subject, description, priority, target version and status.
Each ticket has an automatically generated unique ID
and is assigned to a user who is responsible for the
proper resolution of the issue that it contains. The ticket
ID can be quoted when the associated code change is
checked into the repository of Git thus creating a direct
link between the requirement and its implementation.

Höss et al. Radiation Oncology 2014, 9:79 Page 8 of 10
http://www.ro-journal.com/content/9/1/79
Code-independent tickets can be closed by attaching
meaningful documents like operating procedures, test
results or the instructions for use.
The processing stages of each ticket are recorded in its

history which is particularly relevant for tickets which
are handled by multiple users according to definition.
Especially the state transitions defined by the risk man-
agement process, where a mitigation is handled by four
different persons each of which can reject the specified
requirement or chosen implementation (e.g. because the
requirement is not practical or the implementation is
not target-aimed), were modelled in the ticket life-cycle.
This means that at any given stage only the assigned
user can process such a ticket which concludes with a
change of state (the selectable states are dependent on
the current user role) and a handover to another user.
The endpoint is the closure of the ticket by the risk
manager after the successfully audited ticket has been
presented to and accepted by the risk analysis team by
which the risk mitigation was specified.
The prerequisites for the release of a new FDC version

as an accessory to the HIT facility are that the prede-
fined set of test cases and all associated risk mitigation
tickets have been concluded successfully, and that the
software documentation including the test summary re-
port and the instructions for use is up-to-date and
complete. Besides, the software package and associated
documentation generated during the build process must
be archived before the new FDC version is rolled out to
the target computers.

Discussion
Experience with the implementation of EN 62304
Standalone software qualifies as a medical device, if it per-
forms actions for the benefit of individual patients and is
used for a medical purpose or drives, monitors or influ-
ences the performance or use of a medical device. Although
the application of standards is voluntary, compliance with
the EN 62304 standard provides a presumption of con-
formity with some of the essential requirements for medical
devices laid down in Annex I of the European Council
Directive 93/42/EEC. However, a whole range of other stan-
dards and requirements needs to be considered before
medical software may be placed on the market or put into
service. If an applicable standard or part of it is not ob-
served, the manufacturer has to provide objective evidence
that equivalent safety has been achieved by alternate means.
Therefore, it is advisable and mostly also easier to adhere to
the standard as closely as possible, and to state the reasons
for deviations and/or omissions. The definition of the activ-
ities and the creation of the documents required by the EN
62304 standard are time-consuming at first, but if they are
drafted sufficiently generic many of them can be adopted as
they stand to follow-up projects. The same applies to the
careful selection, implementation and maximum possible
integration of the aforementioned software tools. The exist-
ence of a well-elaborated prototype of the FDC at project
launch has demonstrated the importance of a timely prep-
aration of a requirements specification and subsequent risk
analysis as even the developers of the prototype stated devi-
ating requirements and proposed a variety of changes when
asked to set the former down in writing and take a safety-
related perspective. This resulted in a massive amount of
unforeseen changes – simplifications and expansions, most
of them originating from the risk analysis – which substan-
tially delayed the project and could have been avoided if
considered at an earlier date. Beyond that, the implementa-
tion of the traceability requirements proved to be nontrivial
as several attempts were required to find an approach
which reduced the expenditure for the adaptation of our 11
requirements documents transposing the EN 62304 stand-
ard to an acceptable level in case of software changes.

Software adaptation after initial roll-out
Contrary to expectations, the FDC had to be updated only
months after its first release due to a potential hazard
which was not considered in the initial risk analysis but
became apparent during routine use, namely the possibil-
ity to compare MEFI export files from flash memory and
RAM rather than flash memory exports from subsequent
points in time. To keep the functionality desired for accel-
erator adjustments, but eliminate it as an error source for
patient treatment, a tag indicating the “dump type” was
added to the flashdumps which is checked by the FDC.
The corresponding risk mitigation requires the FDC to
only compare flash memory exports by default. If a com-
parison of MEFI export files from flash memory and
RAM is required, the user has to add a dedicated startup
flag and this deviation from the intended use is clearly in-
dicated on the result print. The experiences gained during
this minor change of the FDC were used to streamline the
software maintenance and problem resolution process
with the objective to shorten the update-cycle to a few
days for minor and a few weeks for major FDC releases.
Especially the need of test automation became apparent.
For the first FDC release, it took 5 days to create the test
data for 42 test cases and carry them out manually. After
script-based test automation, which also included the
automatic generation of test data, only 6 hours were re-
quired to complete 63 test cases prior to the second major
FDC release.

Revision of the European Council Directive 93/42/EEC
At present, a fundamental revision of the regulatory
framework for medical devices is under way based on a
proposal for a regulation of the European Commission
in September 2012 [16] which has been adopted by the
European Parliament in October 2013 (partial vote at

Höss et al. Radiation Oncology 2014, 9:79 Page 9 of 10
http://www.ro-journal.com/content/9/1/79
first reading, 347 voted-in amendments) [17] and trans-
ferred back to the responsible Environment, Public
Health and Food Safety Committee. Its aim is to over-
come the substantial divergences in the interpretation
and application of the existing legislation and to close
the regulatory gaps which exist with regards to certain
products. Unlike a directive which sets out a goal that
all European countries must achieve by transposition
into national law, a regulation becomes immediately en-
forceable as law in all member states simultaneously
thus creating a level playing field for manufacturers, no-
tified bodies and competent authorities. The current dir-
ective leaves the decision to which extent in-house
manufacturing is subjected to legal requirements to the
national legislator, so there is a maximum range of na-
tional law from exemption (e.g. United Kingdom) to CE
marking (e.g. Austria). In Germany, the conformity as-
sessment procedure is simplified, but all applicable es-
sential requirements of Annex I must be met. The
future regulation considers in-house manufactured de-
vices as being put into service thus subjecting them to
the law but exempts them from CE marking, provided
that their manufacture and use occur under a quality
management system. While it is beyond the scope of this
paper to discuss all software-related changes, some alter-
ations of its scope and definitions are noteworthy as they
broaden the range of products falling under the law con-
siderably like the introduction of indirect medical pur-
poses, the inclusion of the prediction of disease and the
expansion of the accessory definition.

Conclusions
The pilot project carried out at the HIT facility clearly
demonstrates that the interpretation and implementa-
tion of the EN 62304 standard, especially the selection
and integration of appropriate software tools and the test
automation by means of dedicated in-house software,
is not feasible without appropriately qualified staff.
Nevertheless, it has also been shown that a standards-
compliant development of small and medium-sized
medical software can be carried out by a small team with
limited resources although the initial effort is significant
and a learning curve must be overcome. We would like
to emphasize that the acquisition of knowledge on
the requirements and implementation of the EN 62304
standard is gaining importance as a revision of the
European regulatory framework for medical devices is
under way which will have an impact on all European
in-house manufacturers because it tightens the legal re-
quirements and rescinds all national provisions which
have obviated or simplified compliance so far. Apart
from the unclear concept of indirect medical purposes,
the major expansion of the accessory definition is highly
questionable. If implemented as proposed, any software
which assists the medical functionality of a medical de-
vice in view of its intended purpose (now: is intended to
be used together with a medical device to enable it to
be used in accordance with its intended purpose) is an
accessory and therefore regulated as a medical device.
As even macros, scripts, dynamically linked libraries and
batch files can be standalone software in the meaning of
the MEDDEV 2.1/6 guidance document [18] on the
qualification and classification of standalone software
this might open Pandora’s box for many radiation oncol-
ogy and medical physics departments all over Europe.

Abbreviations
ACS: Accelerator control system; API: Application programming interface;
DCU: Device control unit; EC: European community; EEC: European economic
community; EN: European standard; FDC: FlashDumpComparator; FWHM: Full
width at half maximum; HIT: Heidelberg ion-beam therapy center;
HTML: HyperText markup language; ID: Identifier; IEC: International
electrotechnical commission; ISO: International organization for
standardization; MB: Megabyte; MEDDEV: MEDical DEVices guidance
document; MEFI: Machine energy focus intensity; PDF: Portable document
format; QA: Quality assurance; RAM: Random access memory; SOUP: Software
of unknown provenance; TR: Technical report; UML: Unified modelling
language; XML: Extensible markup language; XSD: XML schema definition.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RP wrote the initial FDC prototype and expanded it together with CL
according to the requirements specification of BA and OJ. CL selected and
integrated the described software tools, besides he and RP designed and
implemented the tools for test automation. All authors participated in the
execution of the risk analysis and implementation of the risk mitigations,
both overseen by AH. Acceptance testing was carried out by BA. All authors
read and approved the final manuscript.

Author details
1Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450,
69120 Heidelberg, Germany. 2Department of Radiation Oncology, Heidelberg
University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
3Division of Medical Physics in Radiation Oncology, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Received: 17 December 2013 Accepted: 9 March 2014
Published: 21 March 2014

References
1. Council Directive 93/42/EEC of 14 June 1993 concerning medical

devices. OJ 1993, L169:1–43.
2. Directive 2007/47/EC of the European parliament and of the council of 5

September 2007 amending Council Directive 90/385/EEC on the
approximation of the laws of the Member States relating to active
implantable medical devices, Council Directive 93/42/EEC concerning
medical devices and Directive 98/8/EC concerning the placing of
biological products on the market. OJ 2007, L247:21–55.

3. European Committee for Standardization: EN ISO 13485:2012. Medical
devices – Quality management systems – Requirements for regulatory
purposes. 2012.

4. European Committee for Electrotechnical Standardization: EN 62304:2006.
Medical device software – Software life-cycle processes. 2006.

5. European Committee for Standardization: EN ISO 14971:2012. Medical
devices – Application of risk management to medical devices. 2012.

6. International Electrotechnical Commission: IEC/TR 80002-1:2009. Medical
device software – Part 1: Guidance on the application of ISO 14971 to
medical device software. 2009.

Höss et al. Radiation Oncology 2014, 9:79 Page 10 of 10
http://www.ro-journal.com/content/9/1/79
7. European Committee for Electrotechnical Standardization: EN 60601-1-4:1996.
Medical electrical equipment: Part 1-4 General requirements for safety –
Collateral standard: Programmable electrical medical systems. 1996.

8. Haberer T, Debus J, Eickhoff H, Jäkel O, Schulz-Ertner D, Weber U: The
Heidelberg ion therapy center. Radiother Oncol 2004, 73(Suppl 2):186–190.

9. Combs SE, Jäkel O, Haberer T, Debus J: Particle therapy at the Heidelberg
Ion Therapy Center (HIT) - Integrated research-driven university-hospital-
based radiation oncology service in Heidelberg, Germany. Radiother
Oncol 2010, 95(1):41–44.

10. Combs SE, Ellerbrock M, Haberer T, Habermehl D, Hoess A, Jäkel O, Jensen
A, Klemm S, Münter M, Naumann J, Nikoghosyan A, Oertel S, Parodi K,
Rieken S, Debus J: Heidelberg Ion Therapy Center (HIT): Initial clinical
experience in the first 80 patients. Acta Oncol 2010, 49(7):1132–1140.

11. Combs SE, Kessel KA, Herfarth K, Jensen A, Oertel S, Blattmann C, Ecker S,
Hoess A, Martin E, Witt O, Jäkel O, Kulozik AE, Debus J: Treatment of
pediatric patients and young adults with particle therapy at the
Heidelberg Ion Therapy Center (HIT): establishment of workflow and
initial clinical data. Radiat Oncol 2012, 7:170.

12. Habermehl D, Rieken S, Ecker S, Kessel KA, Herfarth K, Debus J, Combs SE:
First experiences in treatment of low-grade glioma grade I and II with
proton therapy. Radiat Oncol 2012, 7:189.

13. Rieken S, Habermehl D, Haberer T, Jaekel O, Debus J, Combs SE: Proton and
carbon ion radiotherapy for primary brain tumors delivered with active
raster scanning at the Heidelberg Ion Therapy Center (HIT): early
treatment results and study concepts. Radiother Oncol 2012, 7:41.

14. Haberer T, Becher W, Schardt D, Kraft G: Magnetic scanning system for
heavy ion therapy. Nucl Instr Meth Phys Res 1993, 330:296–305.

15. European Committee for Electrotechnical Standardization: EN ISO
62366:2008. Medical devices – Application of usability engineering to
medical devices. 2008.

16. European Commission: Proposal for a regulation of the European
Parliament and of the Council on medical devices, and amending
Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC)
No 1223/2009. 2012 [http://www.europarl.europa.eu/registre/
docs_autres_institutions/commission_europeenne/com/2012/0542/
COM_COM(2012)0542_EN.pdf]

17. European Parliament: Amendments adopted by the European
Parliament on 22 October 2013 on the proposal for a regulation of the
European Parliament and of the Council on medical devices, and
amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and
Regulation (EC) No 1223/2009. 2013 [http://www.europarl.europa.eu/sides/
getDoc.do?type=TA&language=EN&reference=P7-TA-2013-428]

18. European Commission: MEDDEV 2.1/6: Guidelines on the qualification
and classification of standalone software used in healthcare within the
regulatory framework of medical devices. 2012 [http://ec.europa.eu/
health/medical-devices/files/meddev/2_1_6_ol_en.pdf]

doi:10.1186/1748-717X-9-79
Cite this article as: Höss et al.: First experiences with the implementation
of the European standard EN 62304 on medical device software for the
quality assurance of a radiotherapy unit. Radiation Oncology 2014 9:79.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.europarl.europa.eu/registre/docs_autres_institutions/commission_europeenne/com/2012/0542/COM_COM(2012)0542_EN.pdf
http://www.europarl.europa.eu/registre/docs_autres_institutions/commission_europeenne/com/2012/0542/COM_COM(2012)0542_EN.pdf
http://www.europarl.europa.eu/registre/docs_autres_institutions/commission_europeenne/com/2012/0542/COM_COM(2012)0542_EN.pdf
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&language=EN&reference=P7-TA-2013-428
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&language=EN&reference=P7-TA-2013-428
http://ec.europa.eu/health/medical-devices/files/meddev/2_1_6_ol_en.pdf
http://ec.europa.eu/health/medical-devices/files/meddev/2_1_6_ol_en.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	General requirements of EN 62304
	Risk management according to EN ISO 14971
	Purpose of the QA software under discussion
	Selection and integration of software tools

	Results
	Risk analysis
	Risk mitigations
	Software development
	Software context and testing
	Requirements traceability

	Discussion
	Experience with the implementation of EN 62304
	Software adaptation after initial roll-out
	Revision of the European Council Directive 93/42/EEC

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Author details
	References

