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Abstract: Over the past 20 years, several proton beam treatment programs have been implemented throughout
the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy
has the potential for improving tumor control and survival through dose escalation. It also has potential for
reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than
conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and
reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to
determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for
proton beam therapy.

Summary sentence: Proton beam therapy is a technically advanced and promising form of radiation therapy.
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Background
X-rays have been used to treat cancer since 1895.
Advances in x-ray therapy over the years include devel-
opment of linear accelerators that produce high-energy
x-rays for deeper penetration. Blocking techniques were
developed to contour the beam to conform to the size
and shape of the tumor target. Multiple beams and
angles are used to adapt the dose to the tumor and to re-
duce the dose to healthy organs. Advances in imaging
have allowed for improved tumor delineation. Four-
dimensional imaging allows measurement of motion of
both tumor and normal structures during treatment.
Changes in tumor size and shape during treatment can
be corrected for use of adaptive radiotherapy techniques.
Faster and more powerful computers allow for more ac-
curate dose calculations and the delivery of intensity
modulated x-ray beams and volumetric arc therapy.
Improved patient and organ immobilization devices,
along with imaging during treatment to detect patient,
organ, and tumor motion (image-guided radiotherapy),
enhance the accuracy of treatment delivery.
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These advances were accomplished without perform-
ing conventional prospective clinical trials. The adminis-
tration of concurrent radiation-sensitizing chemotherapy
and biologically targeted agents has been found to im-
prove both disease control and survival for many cancer
patients.
The likelihood of tumor control through radiation

therapy is related to the dose delivered to the tumor, and
the likelihood of severe organ injury is related to dose to
the organ and volume of the organ exposed to radiation
[1]. A balance always exists between cure and risk of se-
vere complications. The challenge in using high-energy
x-rays to treat cancer is that the x-rays pass through the
thickness of the body, depositing an entrance and an exit
dose to healthy organs. The dose to healthy organs limits
the dose that can be safely administered to the tumor.
Radiation oncologists constantly strive to find the opti-
mal balance between a high-enough dose to prevent can-
cer recurrence and a low-enough dose to avoid injury to
healthy organs.
Proton beam therapy offers an option for obtaining

that balance. Hospital- or clinic-based proton beam facil-
ities have been in existence since 1990. Currently,
11 proton beam facilities are in operation in the
United States (Figure 1) and 26 are operational in 13
other countries (Russia, Switzerland, Sweden, England,
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Figure 1 Proton beam treatment facilities that are operational or under construction in the United States. CDH indicates Central
Dupage Hospital; IU, Indiana University; MGH, Massachusetts General Hospital; OKC, Oklahoma City; U, University; UCSF, University of
California, San Francisco.
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France, South Africa, Canada, Germany, Japan, Italy,
China, South Korea, and Poland) (Figure 2). Eighteen
proton beam facilities are under construction in
Switzerland, Czech Republic, Austria, Italy, China,
Germany, Taiwan, Russia, Slovak Republic, Sweden, and
the United States.
Protons are positively charged subatomic particles

that are massive compared with x-rays. The biologic
effects of protons and x-rays on cells are similar since
both are sparsely ionizing with a relatively small linear
energy transfer. However, the way protons interact
with matter provides advantages compared with
x-rays. As protons enter the body, they deposit a very
low entrance dose. The depth of proton penetration is
dependent on kinetic energy and, hence, the higher
the energy, the deeper is the penetration. When the
proton arrives at its target, it delivers the dose and
stops, thereby eliminating an exit dose. This physical
advantage serves to lower the dose to healthy organs
both superficial and deep to the tumor, thus reducing
the risk of injury. It also allows administration of a
higher dose to the tumor, potentially reducing the
recurrence rate without increasing the complication
rate and leading to better organ function and quality
of life. This result can lead to an avoidance of costs
associated with treating recurrent tumors and
damaged organs. This effect is particularly important
in young children with a high likelihood of cure who
are strongly susceptible to the long-term effects of
x-ray therapy and in patients with cancers located ad-
jacent to critical healthy organs, such as the eye,
brain, brainstem, spinal cord, lung, heart, liver, bowel,
and kidneys.
Clinical review
Ocular (choroidal) melanoma
Treatment options for patients with ocular melanoma in-
clude 1) enucleation, 2) suturing of a radioactive plaque
to the eye overlying the melanoma, and 3) proton beam
therapy. No differences in survival between treatments
have been reported in prospective clinical trials [2,3].
Advantages of the radioactive plaque and proton beam
therapy are preservation of the eye and vision. In a phase
3 study performed to compare the radioactive plaque
with helium ion therapy (helium ions contain 2 protons),
there were fewer recurrences of the melanoma in those
patients treated with helium ions (0% vs 13.3%) [3]. The
proportion of patients who required enucleation because
of melanoma recurrence or complications was less when
they were treated with helium ion therapy (9.3% vs
17.3%). The proportion of eyes with visual acuity greater
than 20/40 was the same with both treatments (21%-
23%).
The Mayo Clinic experience with radioactive plaques

has been reported [4]. The recurrence rate is 8%; the
enucleation rate is 8%. The proportion of patients with
visual acuity greater than 20/40 is 22%. Several large
series of patients treated with proton beam therapy have
been reported, confirming low recurrence rates (3%-4%)
and low enucleation rates (9.4%-11%), with visual acuity
greater than 20/40 in 44.8% [5-9]. Of these series, the
larger ones included 1,406 patients treated in France [8];
2,435 patients in Switzerland [9]; and 2,815 patients in
Boston, Massachusetts [7]. A phase 3 study conducted
by the Massachusetts Eye and Ear Infirmary compared 2
different dose levels of proton beam therapy, 50 Gy and
70 Gy [10]. No differences were noted in outcome, with



Figure 2 Proton beam treatment facilities that are operational or under construction outside the United States.
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recurrence rates of 2% to 3% and enucleation rates of 4%
to 5%.
Proton beam therapy has a number of advantages over

radioactive plaques, including 1) localization requires 1
or no surgery, depending on technique, 2) no hospital
stay is needed, yet treatment is still completed in 5 calen-
dar days, 3) more patients are eligible for proton beam
therapy than radioactive plaque therapy because of the
ability to treat larger tumor sizes and tumors surround-
ing the optic nerve, and 4) medical staff have no radi-
ation exposure.

Skull base chordoma
Skull base chordomas are rare tumors that are difficult
to completely remove surgically. Doses of radiation ther-
apy are limited because of the adjacent brain, brainstem,
cranial nerves, and spinal cord structures. At Mayo
Clinic, with a combination of aggressive surgical debulk-
ing, 3-dimensional (3-D) conformal x-ray therapy, and
Gamma Knife radiosurgery, the 5-year tumor control
rate was 32% in 25 patients [11]. At the Paul Scherrer In-
stitute in Switzerland, with a combination of surgical
debulking and scanning proton beam therapy, the 5-year
tumor control rate was 81% in 42 patients [12]. The inci-
dence of symptomatic temporal lobe injury at Mayo
Clinic was 10% vs 6% with scanning proton beam ther-
apy at the Paul Scherrer Institute [11,12]. At the Harvard
Cyclotron Laboratory, 290 patients with skull base chor-
domas were treated with scattered proton beams [13].
The 5-year tumor control rate was 73%, with an 8% inci-
dence of temporal lobe injury. It appears from these data
that proton beam therapy is more effective than x-ray
therapy in producing a greater probability of long-term
tumor control without increasing the risk of temporal
lobe injury.

Lung cancer
Standard treatment for locally advanced, inoperable non–
small cell lung cancer includes a combination of chemo-
therapy and x-ray therapy. Median survival is about 17
months, with 50% of the patients having severe toxicity
related to treatment (60 Gy of x-ray therapy) [14,15].
Results of phase 3 studies using combined x-ray therapy
(60–64 Gy) and chemotherapy report long-term survivors
(3–5 years) in 15% to 18% with a 40% to 80% recurrence
rate and 48% to 53% of patients having serious or life-
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threatening toxicity (ie, esophagitis and pneumonitis)
[14,15]. The North Central Cancer Treatment Group (in-
cluding Mayo Clinic) performed a phase 1 dose-escalating
trial and found that, by increasing the x-ray therapy dose
to 74 Gy, the median overall survival was favorable at 40
months and the recurrence rate was reduced to 15%, but
the serious, life-threatening toxicity continued to be high
at 54% [16]. The MD Anderson Cancer Center performed
a phase 2 dose-escalating trial using proton beam therapy
and confirmed that 74 Gy resulted in a favorable median
overall survival (29.4 months) and decreased the recur-
rence rate to 20% [17]. In addition, the incidence of serious
toxicity was reduced with proton beam therapy and
included dermatitis (11%), esophagitis (11%), and pneu-
monitis (2%). These results suggest that there is an oppor-
tunity to take advantage of dose escalation with proton
beam therapy to prolong survival; lower the recurrence
rate; decrease the risk of serious, life-threatening toxicity;
and intensify chemotherapy. A recently completed phase 3
study comparing a modest dose increase from 60 Gy to 74
Gy of x-ray therapy failed to demonstrate improved sur-
vival with 74 Gy [18]. The assumed reason for this lack of
benefit was death due to higher doses of x-ray therapy
affecting the heart and lungs adversely [19]. This outcome
suggests that further dose escalation with x-rays will not
be feasible. Massachusetts General Hospital and MD An-
derson Cancer Center are nearing completion of a phase 3
clinical trial comparing x-rays to protons in the treatment
of locally advanced non–small cell lung cancer.

Hodgkin lymphoma in children, adolescents, and young
adults
Hodgkin lymphoma (HL) is a curable hematogenous
malignancy that affects primarily children and young
adults and in which consolidation x-ray therapy is often
used after chemotherapy for treatment of initially
involved lymph node groups. Survivors of HL have an
excessive amount of secondary malignancy (SM), with a
15-year risk of about 15%. Although x-ray therapy may
improve outcomes in HL, it may increase the risk of SM,
particularly breast, lung, and thyroid cancers and
hematogenous cancers. The risk of radiation-induced
cancers is proportional to the dose delivered. Using a
proton beam treatment planning system, we compared
the distribution of proton dose to x-ray dose in patients
with HL treated with x-ray therapy at Mayo Clinic. We
found that the integral dose of exposure radiation to the
patient was reduced by at least 50% with the use of scat-
tered or scanned proton beams compared with 3-D or
intensity modulated x-ray beams. This reduction predicts
that the risk of radiation-induced cancers would be
reduced by at least 50%.
A study from Massachusetts General Hospital of 1,450

patients treated with proton beam therapy at the
Harvard Cyclotron Laboratory appears to support this
conclusion [20]. A subset of the patients (n=503) was
matched to similar patients identified in the Surveillance
Epidemiology and End Results cancer registry who were
treated with x-ray therapy (n=1,591). SM was reported in
12.8% of the patients treated with x-ray therapy com-
pared with 6.4% in patients treated with proton beam
therapy (adjusted hazard ratio, 2.73; 95% confidence
interval, 1.87-3.98; P<.0001). These data substantiate
what we would have predicted by evaluating the x-ray vs
proton beam dosimetry. Other investigators have simi-
larly concluded that proton beam therapy may reduce
the risk of SM by up to 50% in comparison with x-ray
therapy [21].
Similarly, cardiac irradiation during HL x-ray therapy

has been associated with an increased risk of coronary
artery disease and valvular dysfunction [22,23]. There-
fore, a substantial reduction in health care costs, lost
productivity, morbidity, death, and human suffering in
HL survivors could be realized with the use of proton
beam therapy.

Esophageal and gastroesophageal junction cancers
The current standard of care for locally advanced
esophageal cancer is concurrent chemotherapy and x-
ray therapy with or without surgical resection. The 5-
year overall survival rate is 20% to 30%. The incidence of
treatment-related toxicity that is severe or worse is 33%
[24]. Irradiation of the heart has been shown to increase
the risk of a myocardial perfusion abnormality [25]. A
recent review of the Mayo Clinic experience found that
the incidence of non–cancer-related deaths within the
first year after treatment was 8% following chemotherapy
and x-ray therapy without surgery, 33% following pre-
operative chemotherapy and x-ray therapy, and 20% fol-
lowing postoperative chemotherapy and radiation
therapy. The majority of these deaths were due to cardio-
pulmonary toxicity. The risk of cardiac toxicity due to x-
ray therapy is dependent on the dose delivered and the
volume of heart exposed to radiation [1]. Through com-
parative treatment planning analysis of x-ray and proton
beams, we found that the dose delivered to one-third the
volume of the heart was reduced from 75% of the dose
prescribed to the tumor with conventional x-ray therapy
to 58% with intensity modulated x-ray therapy and to just
9% with proton beam therapy. This finding suggests that
cardiac-related morbidity and death could potentially be
reduced by using proton beam therapy to treat esopha-
geal cancer.

Pediatric cancers
Great advances have been made in the treatment of
pediatric cancers. Currently, 85% of pediatric cancer
patients are cured, although 65% of long-term survivors
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have chronic health conditions, with death from a SM or
other treatment-related event occurring in 20% [26-32].
Despite the increased use of chemotherapy in the manage-
ment of pediatric cancers, x-ray therapy has an important
role in the treatment of approximately 50% of children
with cancer, particularly children with brain tumors. How-
ever, although x-ray therapy is effective in many children,
their quality of life is frequently compromised by late
effects of x-ray therapy.
In pediatric practice, the relatively large volume of the

body exposed to low doses of x-ray therapy is frequently
clinically relevant in relation to long-term effects. Treat-
ment complications include neurocognitive deficits, hear-
ing loss, pituitary dysfunction, hypothyroidism, cardiac
dysfunction, pulmonary disease, diminished vertebral
body growth, scoliosis, gastrointestinal tract dysfunction,
infertility, and SM. The marked reduction in dose to the
body and healthy organs associated with proton beam
therapy may be used to reduce the extent of the harmful
low-dose x-ray effect and thus may be clinically beneficial
in pediatric radiation oncology practice.
Medulloblastoma is the second most common pediatric

brain tumor. This tumor classically develops in the poster-
ior fossa with frequent metastases along the craniospinal
axis, and thus craniospinal axis x-ray therapy is a vital
component of treatment. Once considered incur-able, the
5-year overall survival rate is now in excess of 65% follow-
ing treatment with a combination of surgery, x-ray ther-
apy, and chemotherapy. This rate raises concerns
regarding long-term, treatment-associated adverse effects.
Of utmost concern are the neuropsychological

effects of x-ray therapy to the central nervous system,
including impaired neurocognitive development and
behavioral disorders. These effects are dose and vol-
ume dependent. There is evidence—from whole-brain
irradiation for leukemia—of a dose–response effect on
long-term neuropsychological effects [33]. In a recent
study of children treated for medulloblastoma, Grill
et al. [34] showed a significant correlation between
full-scale IQ scores and x-ray dose, with mean scores
of 84.5, 76.9, and 63.7 for 0, 25, and 35 Gy, respect-
ively. A dose–response curve relating the probability of
neuropsychological sequelae to brain dose has been
derived from an analysis of the medical literature [33].
Mulhern et al. [35] prospectively examined the neuro-
psychological functioning of children with medulloblas-
toma treated in the POG 8631/CCG 923 study. They
found that children treated with 23.4 Gy craniospinal axis
x-ray therapy had less neuropsychological toxicity than
those treated with 36 Gy.
Long-term effects from x-ray therapy for pediatric can-

cers include hypoplasia of soft tissue and bone. In chil-
dren treated with abdominal x-ray therapy for Wilms
tumor, 19.6% were reported to have clinically significant
long-term orthopedic deficits [36]. There is evidence that
the severity of these effects is dose related [37]. Other long-
term effects include hearing loss; primary hypothyroidism;
thyroid cancer; cardiomyopathy, especially when x-ray
therapy is combined with anthracycline chemotherapy;
cardiac valvular disease; early onset coronary artery dis-
ease; infertility related to pelvic x-ray therapy; and second-
ary osteosarcoma related to x-ray therapy for Ewing
sarcoma, retinoblastoma, or medulloblastoma.
The goal of clinicians is not only to eradicate the pri-

mary tumor, but also to minimize the risk of radiation-
induced cancers over the lifetime of these children. The
observation that many of the late effects of x-ray therapy
appear to be dose dependent provides the rationale for
proton beam therapy reducing some of the effects that
result from exposing structures outside the tumor target
volume to radiation.
Comparison of treatment plans using proton, conven-

tional x-ray, or intensity modulated x-ray beams has
showed improved dose distributions with proton beams,
with modeling estimating a 2-fold reduction or more in
risk of a radiation-induced cancer for a child with
rhabdomyosarcoma and an 8- to 15-fold decrease for a
child with medulloblastoma (due to larger treatment vol-
ume) [38]. A study comparing the risk of radiation-
induced cancer following spinal irradiation for childhood
medulloblastoma after various radiation delivery techni-
ques found the highest lifetime risk of SM with intensity
modulated x-ray therapy (30%) and the lowest risk with
intensity modulated proton therapy (4%) (Table 1) [39].
These studies underscore the concern with using x-ray
therapy in the treatment of pediatric cancers.
Table 2 illustrates a comparison of 3 radiation therapy

treatment delivery techniques for a child with medullo-
blastoma [40]. The substantial sparing of healthy tissue
is apparent in proton beam therapy of the posterior fossa
and spinal axis.
A recent publication from Sweden projected

decreased health care expenses using proton beam
therapy in the treatment of pediatric medulloblastoma
[41]. The initial cost of proton beam therapy
(€10,217.90) was approximately 2.5 times the initial
cost of x-ray therapy (€4,239.10). However, the cost of
treating adverse events related to x-ray therapy
(€33,857.10) was 8 times greater than the cost of
treating adverse events related to proton beam ther-
apy (€4,231.80). Considering both initial cost of treat-
ment and the cost of treating adverse events related
to the treatment, x-ray therapy was 2.6 times more
costly than proton beam therapy (€38,096.20 vs
€14,449.70). The additional costs related to treating
adverse events associated with x-ray therapy were due
to IQ loss, hearing loss, growth hormone deficiency,
hypothyroidism, osteoporosis, and SM.



Table 1 Estimated risk of radiation-induced cancer by
radiation delivery technique following spinal irradiation
for childhood medulloblastoma

Radiation delivery
technique

Risk of radiation-Induced
cancer, %

Intensity modulated x-ray beam 30

Electron beam 21

Conventional x-ray beam 20

Intensity modulated electron beam 15

Intensity modulated proton beam 4

Data from Mu et al. [39].
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Dosimetric and clinical studies have demonstrated the
benefits of proton beam therapy compared with x-ray
therapy in reducing dose and harm to healthy organs in
children with retinoblastoma, medulloblastoma, pelvic
soft tissue sarcoma, bone sarcoma, and orbital rhabdo-
myosarcoma [42,43].
Breast cancer
The meta-analysis of the Early Breast Cancer Trialists’
Collaborative Group demonstrated improved 5-year
tumor control and improved 15-year breast cancer and
overall mortality rates with the use of adjuvant x-ray
therapy [44]. The therapy was used in the clinical setting
of breast-conserving and postmastectomy treatment.
However, x-ray therapy was associated with an excess of
SM (lung cancer relative risk [RR], 1.61 [P=.0007];
esophageal cancer RR, 2.06 [P=.05]; leukemia RR, 1.71
[P=.04]; soft tissue sarcoma RR, 2.34 [P=.03]; contralat-
eral breast cancer RR, 1.18 [P=.002]) and non–breast
cancer deaths (any non–breast cancer RR, 1.12 [P=.001];
pulmonary embolism RR, 1.94 [P=.02]; heart disease RR,
1.27 [P=.0001]; lung cancer RR, 1.78 [P=.0004]; and
esophageal cancer RR, 2.4 [P=.04]). The non–breast can-
cer deaths reduce the efficacy of x-ray therapy by 20%.
In patients with positive axillary lymph nodes undergo-
ing postmastectomy chest wall and nodal x-ray therapy,
30% die of noncancer-related deaths. If the morbidity
and death due to SM and cardiopulmonary disease could
be reduced or eliminated, the overall survival advantage
for women treated with x-ray therapy would be further
Table 2 Dose to cochlea and heart by radiation delivery
technique following craniospinal irradiation for
childhood medulloblastoma

Radiation
delivery
technique

Dose to
90% of the
cochlea, %

Dose to 50%
of the heart
volume, %

Conventional x-ray beam 101.2 72.2

Intensity modulated x-ray beam 33.4 29.5

Proton beam 2.4 0.5

Data from St Clair et al. [40].
improved, along with reduction in human suffering and
health care costs. The risk of cardiotoxicity is increas-
ingly important in light of the cardiotoxicity associated
with anthracycline and, more recently, trastuzumab
treatment, which are mainstays in modern adjuvant
medical therapy for breast cancer.
We developed 3 treatment plans for a cohort of

women with left-sided stage I breast cancer who were
undergoing breast-conserving therapy at Mayo Clinic
with lumpectomy and breast irradiation. The first plan
used conventional x-ray therapy to the entire breast, with
an electron boost to the tumor cavity; the second used
passively scattered proton beams; and the third used ac-
tively scanned proton beams. Compared with the x-ray
and electron boost plan, the 2 proton beam plans sub-
stantially reduced all measures of lung dose. For ex-
ample, the mean total lung dose was reduced by 71%
using the passively scattered beams and by 81% using
the actively scanned beams. Both proton beam plans
eliminated the dose to the contralateral lung. The 2 pro-
ton beam plans also reduced all measures of dose to the
heart. For example, the mean total heart dose was
reduced by 75% with the passively scattered beams and
by 99% with the actively scanned beams. The mean dose
to the contralateral breast was reduced with the proton
beam plans compared with the x-ray and electron beam
plan—by 88% using the passively scattered beams and by
96% using the actively scanned beams. In addition, the 2
proton beam plans reduced the mean dose to the entire
body by 37% for the passively scattered proton beams
and by 54% for the actively scanned proton beams.
A similar dosimetric study of women undergoing post-

mastectomy chest wall and regional lymph node irradi-
ation at Mayo Clinic revealed similar advantages to
protons compared with x-rays. Other investigators have
confirmed these findings [45-49]. Lundkvist et al. [50]
have demonstrated that proton beam therapy is cost-
effective in women with left-sided breast cancer and risk
factors for cardiac disease, on the basis of a lower cost
per quality-adjusted life-year. Cost-effectiveness will be
further improved when investigators also include the
cost reductions associated with a reduced incidence of
radiation-induced malignancy and pulmonary disease. It
is hypothesized that proton beam therapy will be most
cost-effective in young women with left-sided breast can-
cer; in women with a long life expectancy; and in women
with risk factors for cardiopulmonary disease, a desire to
avoid mastectomy, and indications for postmastectomy
chest wall and nodal irradiation.
Current clinical trials are evaluating the safety, efficacy,

and cosmetic outcome of partial breast irradiation com-
pared with whole breast irradiation. Should these trials
document a meaningful clinical advantage to partial
breast irradiation, Taghian et al. [48], Kozak et al.
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[49,51], and Bush et al. [52,53] have demonstrated that
partial breast irradiation using proton beam therapy is
safe, effective, and technically feasible; provides excellent
tumor coverage; and improves healthy tissue (heart and
lung) sparing, including nontarget breast tissue, when
compared with partial breast irradiation using conven-
tional x-rays and electron beams. In addition, it is less ex-
pensive than intracavitary and interstitial brachytherapy.
Prostate cancer
The treatment of prostate cancer with proton beam ther-
apy is controversial. Current treatment options include
prostatectomy, brachytherapy, and intensity modulated
x-ray therapy, all of which are less costly than proton
beam therapy.
Prospectively randomized clinical trials have demon-

strated that higher doses of x-ray therapy result in
improved survival and lower doses to the rectum and
bladder result in lower risks of complications. A phase 3
study funded by the NHS Trust randomly assigned 225
men with prostate cancer to 2-dimensional (2-D) or 3-D
conformal x-ray therapy [54]. The results of this study
proved the principle that reducing the radiation dose to
the rectum and bladder by using 3-D conformal techni-
ques reduces the incidence of ≥grade 2 bowel toxicity
(from 18% with 2-D to 8% with 3-D) and bladder toxicity
(from 23% with 2-D to 20% with 3-D). A phase 3 dose-
escalation study conducted by MD Anderson Cancer
Center randomly assigned 301 patients to 70 Gy using 2-
D x-ray therapy vs 78 Gy using 3-D conformal x-ray
therapy [55,56]. This study proved that a higher dose of
x-ray therapy results in fewer recurrences (79% 5-year
freedom from biochemical failure with 78 Gy vs 69%
with 70 Gy). The ≥grade 2 bowel and bladder toxicity
was 14% (bowel) and 20% (bladder) for 2-D compared
with 21% (bowel) and 9% (bladder) for 3-D x-rays.
The reduced recurrence rate using a higher dose has

been confirmed by another phase 3 clinical trial con-
ducted by the Netherlands Cancer Institute, in which
664 men were randomly assigned to 68 Gy vs 78 Gy
using 3-D conformal x-ray therapy [57]. The 5-year free-
dom from biochemical failure was increased from 53%
with 68 Gy to 66% with 78 Gy. The ≥grade 2 bowel tox-
icity was 27% with 68 Gy and 32% with 78 Gy; the
≥grade 2 bladder toxicity was 41% with 68 Gy and 39%
with 78 Gy. Intensity modulated x-ray therapy has been
administered to a dose as high as 81 Gy in 561 men with
prostate cancer at Memorial Sloan-Kettering Cancer
Center, with ≥grade 2 bowel toxicity of just 1.6% and
≥grade 2 bladder toxicity of 12% [58]. Loma Linda Uni-
versity Medical Center has reported the results of treat-
ing 1,255 men with prostate cancer to 74 Gy using
proton beam therapy [59]. The 5-year freedom from
biochemical failure was 75%, with 3.5% ≥grade 2 bowel
toxicity and 5.4% ≥grade 2 bladder toxicity.
Finally, Massachusetts General Hospital and Loma

Linda University Medical Center conducted a phase 3
dose-escalation study in 393 patients with prostate cancer
using a combination of x-rays with a proton beam boost
to the prostate gland [60]. Patients were randomly
assigned to 70.2 Gy or 79.2 Gy. There was a significant
improvement in the 5-year freedom from biochemical fail-
ure rate in men randomly assigned to 79.2 Gy (80%) com-
pared with those randomly assigned to 70.2 Gy (61%)
(P<.0001). This improvement in recurrence rate with
higher dose was obtained without significantly increasing
the risk of ≥grade 2 bowel toxicity (9% with 70.2 Gy vs
18% with 79.2 Gy) or bladder toxicity (20% with 70.2 Gy
vs 21% with 79.2 Gy). Only 2% of patients in both treat-
ment arms had late severe (≥grade 3) genitourinary tox-
icity and 1% of patients in the high-dose arm had late
≥grade 3 gastrointestinal tract toxicity [61]. A cost-
effectiveness study suggested that proton beam therapy
may be cost-effective in young men with intermediate-risk
prostate cancer who have longer life expectancy [62].
In summary, direct evidence shows that the higher the

dose of radiation administered, the lower the risk of
prostate cancer recurrence. Direct evidence also shows
that lower doses to the rectum and bladder are associated
with a lower risk of complications. Indirect evidence
shows that with highly conformal techniques (intensity
modulated x-ray therapy or proton beam therapy), the
dose can be further escalated without increasing the risk
of bowel or bladder toxicity and, in fact, with a lower risk
of harm than with conventional 2-D and 3-D x-ray
therapies. A phase 3 study comparing high-dose intensity
modulated x-ray therapy with proton beam therapy was
recently opened to patient accrual.
One way of drastically reducing the cost of proton

beam therapy compared with intensity modulated x-ray
therapy and bringing it more in line with prostatectomy
and brachytherapy is to reduce the number of treatments
from 40 to 45 administered over 8 or 9 weeks to 5 treat-
ments administered in 1 week [63]. This regimen would
be far more convenient for patients and reduce their
time off work and their out-of-pocket expenses. Clinical
trials evaluating the safety and efficacy of hypofractio-
nated proton beam therapy should be designed and
conducted.

Head and neck cancer
Evidence exists that patients with head and neck cancer
may benefit from proton beam therapy by increasing the
dose to the cancer to reduce recurrence risk and by re-
ducing the dose to the salivary glands, mandible, and
maxilla to lower the risk for dry mouth, dental caries,
dental extractions, and osteoradionecrosis [64-67]. The
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risk of osteoradionecrosis has been shown to be asso-
ciated with the total dose and the dose per treatment
received by the mandible, with a 0% risk for less than 54
Gy at 1.8 Gy per treatment and a 9.8% risk for 54 Gy or
greater at 1.8 Gy per treatment [68]. We evaluated a co-
hort of consecutive patients at Mayo Clinic undergoing
postoperative adjuvant x-ray therapy for tongue cancer.
We planned that each patient would receive intensity
modulated x-rays and actively scanned proton beams. All
measures of mandibular dose were significantly reduced
in the patients receiving actively scanned proton beams.
For example, the mean volume of the mandible receiving
54 Gy with intensity modulated x-ray beams was 61%
(range, 37%-90%) compared with 26% (range, 6%-51%)
with actively scanned proton beams (P=.002). Further-
more, the mean parotid dose was reduced from 33.1 Gy
(range, 24.2-44.1 Gy) with intensity modulated x-ray
beams to 19.3 Gy (range, 9.6-32.6 Gy) with actively
scanned proton beams (P=.002), thereby significantly re-
ducing the risk of xerostomia [69].

Other cancers
Potential advantages of proton beam therapy exist for
rectal and anal cancers (lower dose to bowel, bladder,
and hips); gastric, pancreatic, and hepatobiliary cancers
(lower dose to liver, small bowel, heart, lungs, kidneys,
and spinal cord); and bone and soft tissue sarcomas.
Improved hematologic tolerance may allow dose intensi-
fication of chemotherapy given concurrently with proton
beam therapy for thoracic, gastrointestinal tract, and
other cancers [17].

Take home points
Mayo Clinic is a national provider of health care with
clinics and hospitals in Arizona, Florida, Georgia, Iowa,
Minnesota, and Wisconsin caring for more than 13,000
new cancer patients annually. The most common types
of cancer treated with radiation therapy at Mayo Clinic
are breast cancer (15%), lung cancer (12%), prostate can-
cer (11%), gastrointestinal tract cancers (10%), and head
and neck cancer (5%). In 2002, the Department of Radi-
ation Oncology participated in a departmental exercise
to review its status and determine its future direction. As
a result of this exercise, the implementation of a charged
particle therapy program became a top priority.
There is always a dilemma for large medical prac-

tices on the timing for the implementation of new tech-
nologies. Health technology assessment is the systematic
evaluation of properties, effects, or other impacts of
health technology. The main purpose of a health tech-
nology assessment is to inform decision making for pol-
icy decisions related to technology in health care. The
assessment may address the direct and intended conse-
quences of technologies, as well as their indirect and
unintended consequences. Historically, the emphasis has
been on technology assessment among hospitals, health
systems, and health plans. The most common form of
technology assessment has focused around pharmaceuti-
cals through pharmacy and therapeutics committees
[70]. However, in recent years the interest has been in-
creasing in technology assessment around devices and
procedures. For example, 64-slice computed tomog-
raphy, positron emission tomography, da Vinci robots,
health information technology systems, and telemonitor-
ing programs have undergone technology assessments
commonly. Typically, the goal of these committees is to
weigh the benefits and costs and conduct analyses of re-
turn on investment of new technologies. This evaluation
also allows health systems to identify priorities for
investment.
We recognize the need to generate, evaluate, integrate,

and manage knowledge and information related to pro-
ton beam therapy. To transform the cancer care delivery
process and to be trusted and affordable through the re-
duction of harm and cost to patients and society, health
care providers will need to define which patients benefit
the most from proton beam therapy and to define out-
comes (tumor control, overall survival, patient-reported
function and quality of life, and cost-effectiveness) pro-
spectively in controlled clinical trials and registries.
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