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Abstract

Background: To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy
(IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer.

Methods: Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for
3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning
and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a
simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control
probabilities and normal tissue complication probabilities were calculated.

Results: Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean
PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index
was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication
probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for
3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P< 0.05). Average treatment delivery
time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for
VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum.

Conclusions: VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive
bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB
is feasible in selected patients with localized tumours.
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Introduction
Three-dimensional conformal radiotherapy (3D-CRT)
has historically been the standard modality for external
beam radiotherapy (RT) for bladder cancer. The morbid-
ity of bladder cancer treated with conventional radio-
therapy is well known with a RTOG update showing
that 7% of their patients experienced late grade 3+ pelvic
toxicity [1]. Intensity modulated radiation therapy
(IMRT) can treat less of the surrounding normal tissues
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potentially reducing normal tissue side effects. Hsieh
et al. [2] found that IMRT provided good locoregional
progression free survival particularly in the elderly blad-
der cancer group. Another advantage of IMRT is the
ability to deliver more than one dose level to target
volumes at the same time. This provides for the poten-
tial to deliver a simultaneous in-field boost to well loca-
lised primary sites of the tumor [3,4]. However, the
potential negative of IMRT include the increased time
required for RT delivery and the associated risk of blad-
der filling and changes in bladder shape and size. The
magnitude of bladder filling during treatment delivery
has recently been demonstrated to be approximately
1cm3 per minute, but with wide inter patient variation
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Table 1 Clinical Dosimetric Constraints used in Planning

3D-CRT/IMRT/VMAT

PTV D2%≥ 60.8Gy

D98%≤ 68.5Gy

Median absorbed dose (D50%) to be ±2%
of 64Gy in 32 fractions of 2Gy each

Bladder V15≤ 80%

V25≤ 75%

V35≤ 70%

V50≤ 65%

Rectum D50≤ 50Gy

D40≤ 64Gy

V50< 50%,

V60< 35%,

V65< 25%,

V70< 20%,

V75 <15%

Rt Fem Head and
Lt Fem Head

D100≤ 35Gy

D60≤ 45Gy

D10≤ 50Gy

Small bowel (non rectal) V15Gy≤ 350cc

V30Gy≤ 150cc

V35Gy≤ 120cc

V45Gy≤ 50 cc

V50Gy= 0 cc
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[5]. It would be particularly problematic if highly con-
formal dose distributions are used which are typical for
IMRT. Another disadvantage of IMRT is the increased
number of monitor units (MU) needed, which results in
a greater integral body dose, with a probable increased
risk of second malignancies [6].
VMAT is a novel type of IMRT which may be able to

address both the shortcomings of IMRT discussed
above. In VMAT, gantry speed, multileaf collimator
(MLC) leaf position and dose rate are dynamically varied
during rotation of the gantry yielding a fast and highly
conformal treatment delivery [7]. While many reports
on the clinical use of VMAT in the context of prostate,
cervix and head and neck cancer exist [8-12] there is to
our knowledge no report on the suitability of VMAT for
radiotherapy of bladder cancer.
RapidArc (Varian Medical Systems, Palo Alto, CA) uti-

lises the optimisation algorithm first described by Otto,
K [13] to plan VMAT. This technology has recently been
implemented clinically and is becoming more widely
available in radiotherapy centres. Planning studies com-
paring VMAT with IMRT for the primary treatment of
prostate cancer have demonstrated some improvements
in plan quality [14,15]. Compared with IMRT, the poten-
tial advantages of VMAT include a large reduction in
the number of MUs, with an associated reduction in
treatment time, required to deliver a given fraction size.
We sought to determine if the dosimetric parameters

for 3D-CRT, IMRT and VMAT for muscle invasive blad-
der cancer can be similar. If dosimetric outcome was
similar we aimed to compare monitor units (MU) and
required beam delivery time as well as planning time
required for three modalities. We also aimed to compare
normal tissue complication probability and tumour con-
trol probabilities between the modalities. Finally in
patients with localised tumours amenable to a boost we
examined the feasibility of a simultaneous infield boost
(SIB) of the primary tumour for the IMRT and VMAT
techniques.

Method
All 15 participant images were from a human ethics
approved bladder cancer protocol, full details of this
protocol have been previously published [16]. Patients
underwent CT simulation using 3mm thick slices by
3mm spacing, after emptying their bladder completely.
Immobilisation was with ankle stocks and a bolster
under the knees. A single radiation oncologist (FF) com-
pleted contouring of the bladder, primary tumour, rec-
tum, and non-rectal bowel prior to commencement of
the project. All 3D-CRT, IMRT and VMAT plans were
created prospectively using the unique set of contours
for each patient by one experienced radiation therapist
investigator (LW). A standalone Eclipse (Varian, Palo
Alto, CA) treatment planning system, installed on a Dell
Precision T5500 computer, was used for all plan cre-
ation. The radiation therapist had extensive experience
with 3D-CRT and IMRT planning, as well as training
and although lesser experienced with VMAT planning
was supported by a very experienced VMAT planner to
mitigate any bias in recorded planning times.
The treatment plans were based on whole bladder

treatment with a single phase treatment. The study was
based on the original planning CT and contoured
volumes in each of the 15 patients. The CTV consisted
of the gross tumour volume (GTV) and the whole blad-
der. As outlined in Australian and New Zealand consen-
sus guidelines for bladder cancer radiotherapy [17],
pelvic lymph nodes were not an elective part of the vol-
ume in any patient. The CTV to PTV margin was
1.5cm. No oral or intravenous contrast was used at
simulation. The rectum and non rectal bowel (all bowel
not considered part of the rectum) were contoured 4
slices (12mm) above and below the PTV. Each patient
had one 3D CRT, one IMRT and one VMAT plan cre-
ated by the same radiation therapist (LW). The same
dose constraints were used for creation of 3D CRT,
IMRT and VMAT plans (Table 1).
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The total prescription dose to the PTV was based on a
median dose of 64Gy delivered in 32 fractions at 2Gy
per fraction treating daily, five days per week over six
and the half weeks. Plans were normalised to ensure that
the 95% isodose adequately covered the PTV and that
the dose distribution was such that the minimum dose
to 99% of the PTV (D99%) was greater than or equal to
95% of the prescribed dose (60.8Gy) and the mean CTV
dose was within 0.5Gy of the prescribed dose. A number
of dosimetry parameters were reported using the recom-
mendations of the ICRU Report 83 and ASTRO to com-
pare the treatment plans [18,19]. All plans were
evaluated to ensure they met our institutional dose con-
straints outlined in Table 1. All 3DCRT plans were com-
posed of a 5 beam field arrangement utilising 18MV
photons. MLC beam shaping and beam modifiers (eg
wedges) were employed as required to produce the most
conformal dosimetry. All IMRT and VMAT plans were
created using a 6MV photon beam applicable to a Varian
Clinac iX (Varian Medical Systems, Palo Alto, CA) linear
accelerator with a 120 leaf Millennium dynamic multi-
leaf collimator (MLC). 6MV photons were utilised for
IMRT and VMAT as this reflected most published clin-
ical studies as well as current practice in our institution.

Simultaneous infield boost (SIB)
10 of the 15 patients whom had well localised tumours
were considered for a SIB. Patients with multiple
tumours were excluded from SIB planning. For the SIB
the bladder tumour/site of disease was contoured as
CTV2 and a 2 cm margin used to create PTV2. The SIB
dose was an additional 10Gy, based on a modelling study
by Wright et al. [20], resulting to a total dose of 74Gy in
32 fractions.

IMRT plans
IMRT plans were generated on the Eclipse Version
8.9.08 treatment planning software (Varian Medical Sys-
tems, Palo Alto, CA) using a 7 beam multifield tech-
nique. The initial optimisation parameters and their
priorities were set according to our institutional opti-
misation protocol and then adjusted as required to
achieve the dose constraints (Table 1) using a minimum
of 60 iterations. A Normal Tissue Objective was
included and the default smoothing parameters were ap-
plied to help reduce hotspots outside the PTV and the
total monitor units.

VMAT plans
VMAT plans utilising the Varian RapidArc technique
(Varian Medical Systems, Palo Alto, CA) were planned
using Eclipse Version 8.9.08 treatment planning software
using the same CT-dataset and contoured volumes as
the IMRT plans. A single arc technique was used with
the gantry set to rotate through 340° in a clockwise dir-
ection from a starting position of 190° to a final position
of 170° to reduce the amount of treatment through the
rectum and central rail of the couch top. The collimator
rotation was individually optimised for each patient but
generally set at 45° to reduce the effect of tongue and
groove leakage.
The final dose calculation for all 3 of the plans for

each patient was performed using the anisotropic analyt-
ical algorithm (AAA) version 8.9.08 with a 2.5mm dose
calculation grid space.

Delivery times
Treatment was delivered for each of the 15 3D-CRT,
IMRT and VMAT plans using a Varian 21iX Linear Ac-
celerator (Varian Medical Systems, Palo Alto, CA). All
beams were delivered to an empty bunker. Beam delivery
time was measured using a stopwatch from the begin-
ning of the first beam to the end of the last beam includ-
ing all gantry movements. Beam order was optimised to
simulate live treatment scheduling. As no patient was
involved in this process, these treatment times do not
include patient set-up time, which would be expected to
be the same for all three plans.

Conformality and homogeneity
The degree of conformality of the plans was measured
by the conformity index (CI) which is a ratio of the vol-
ume of tissue receiving at least 95% of the prescribed
dose divided by the volume of the PTV (Equation 1). A
CI value closer to 1 is more conformal.

CI ¼ V95%

VPTV
ð1Þ

The homogeneity index (HI) was also calculated and
is the difference between the near-maximum and
near-minimum dose normalised to the median dose
(Equation 2) and measures the dose homogeneity across
the PTV. A HI value approaching zero indicates a more
homogenous dose distribution within the PTV.

HI ¼ D2% � D98%

D50%
ð2Þ

The dose was normalised to a selected percentage to
give 95% of the dose to 99% of the PT. Once each plan
was normalised to ensure the PTV dose reflected the
prescribed dose, the DVH data was exported as a CSV
file with a resolution of 0.1Gy via the export functions
embedded in Eclipse for importing into the TCP/NTCP
software.
As the definition of CI does not take into account the

location and the shape of the 95% isodose volume (V95)
relative to the PTV, we also calculated the Paddick’s
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index which takes into account the coverage of the tar-
get volume with the 95% isodose. The Paddick's defin-
ition of conformity index is defined as [21],

Paddick Index ¼ TV95^2
V95 � TV ð3Þ

where TV95 is the target volume (TV) within the 95%
isodose volume (V95).

Radiobiology modelling
Tumour control probability (TCP) and normal tissue
complication probabilities (NTCP) were calculated using
the equivalent uniform dose (EUD) mathematical mod-
els and software code described by Gay and Niemierko
[22]. Briefly, these models determine EUD from the dose
volume histogram (DVH) and apply a parameter ‘a’
which is specific to the tumour or organ at risk. The par-
ameter a can force the EUD to represent maximal, min-
imal or average dose. In the case of tumours, the a
parameter has a large negative number so that the EUD
for tumours is close to the minimal dose. For normal tis-
sues with serial like architecture, the a parameter will
have a large positive number, and for normal tissues that
exhibit a large volume effect, a will have a small positive
number. Values for the a parameter used in the TCP
and NTCP calculations are summarised in Table 2 and
were derived from the references shown in this table, or
from the values recommended by Gay and Niemierko
[22] if not specified in the relevant reference. The NTCP
and TCP models also require values for the α/β ratio,
TD50 (the dose for 50% complication rate probability)
for normal tissues, TCD50 (tumour dose to control 50%
of tumours irradiated), and γ50 (slope of the dose re-
sponse curve). For γ50, we have assumed a value of 4 for
late effects and 2 for the PTV unless an alternative value
has been suggested by the associated reference.

Statistical analysis
The 3 treatment techniques were compared using Fried-
man’s test. When the p-value for the test was inferior to
0.05, a pair-wise comparison was conducted to identify
which treatment techniques differ using the Wilcoxon
test. No correction for multiple testing was used.
Table 2 Values for the a parameter used in the TCP and
NTCP calculations

TCD50 TD50 a γ50 α/β Reference

Bladder 59 Gy −13 2 13 Wright [20]

Rectal late effects 76.9 Gy 11 4 3 Michalski [23]

Non-rectal bowel 59 Gy 11 4 3 Kavanagh [24],
Pan [25]

Left & right femurs 65 Gy 13 2.7 3 Deb [26]
Results
Dosimetric outcome
Table 3 shows the dosimetric outcomes of the plans cre-
ated using a 3D-CRT, IMRT or VMAT technique. Using
a range of dosimetry parameters, we found no statisti-
cally significant difference in target volume coverage or
dose to the OARs except for the femurs that achieved a
lower dose for the IMRT and VMAT techniques com-
pared with 3DCRT. With SIB the dosimetric parameters
for in favour of VMAT, such as for left femur and non-
rectal bowel, none of these can be considered a clinical
significant difference.

PTV conformity index (CI), homogenity index (HI), and
Paddick’s index
The mean PTV conformity (CI) index for 3D-CRT was
1.32, for IMRT 1.05, and for VMAT 1.05. The PTV HI
index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086
for VMAT. The Paddick index was smaller for 3D-CRT
than IMRT (−0.18, p< 0.001), and VMAT (−0.16,
p< 0.001). The Paddick index difference between IMRT
and VMAT (0.02, p< 0.015) is considered clinically
insignificant.

Planning time
The total planning time was found to be a mean of 30.7
minutes (range 10–45 minutes) for 3D-CRT; 49.33 minutes
(range 20–90 minutes) for IMRT; and 141 minutes
(60–240 minutes) for VMAT. Total times on a net-
worked Eclipse system would be shorter, since calcula-
tions are distributed across multiple workstations when
using AAA algorithm. 3DCRT was significantly quicker
than VMAT and IMRT (P< 0.05) while IMRT was
quicker than VMAT (P< 0.05). There was no obvious
trend in planning times (such as a decrease in time with
experience) over the study period.

Monitor units
The mean monitor units was lowest for 3D-CRT at 267
(range 250–293); was 403 (range 333–489) for VMAT,
and highest at 824 (range 641–1083) for IMRT; (P< 0.05).

Treatment times
Average treatment delivery time were 2:25 min (range
2:01–3:09) for 3D-CRT; 4:39 min (range 3:41–6:40) for
IMRT; and were shortest at 1:14 min (range 1:13–1:14)
for VMAT.

Tumour control probability and normal tissue
complication probabilities
Table 4 shows the TCP and NTCP for 3D-CRT, IMRT and
VMAT. As can be seen most probabilities are similar.
With the use of IMRT and VMAT the probability of
femoral head complications was lower that with 3D-CRT.



Table 3 Dosmetric values for whole bladder treatment

3DCRT IMRT VMAT

Mean (min-max, st dev) Mean (min-max, stdev) Mean (min-max, stdev)

CTV MAX 66.8 (65.1-68.4, 0.94) 66.1 (65.5-66.7, 0.41) 66.7(65.7-68, 0.65)

CTV MIN 63.1 (62.2-63.7,0.44) 62.4 (61.9-63.1, 0.34) 61.8(61–62.6, 0.49)

CTV MEAN 64.4 (64.2-64.5, 0.11) 64.3 (63.8-64.5, 0.2) 64.3(63.9-64.5, 0.19)

CTV MEDIAN 64.2 (63.9-64.4,0.15) 64.4 (63.7-64.6, 0.24) 64.4(63.9-64.6, 0.2)

CTV D98% 63.4 (62.9-63.9,0.3) 63 (62.7-63.7, 0.27) 62.9(62.4-63.5, 0.35)

CTV D2% 66.1 (64.8-67.5,0.74) 65.6 (64.8-66.2, 0.4) 65.6 (64.9-66.1, 0.36)

CTV D99> 60.8Gy 63.3 (62.8-63.8,0.32) 62.9 (62.6-63.6, 0.28) 62.7(62.2-63.4, 0.39)

PTV MAX 66.9 (65.3-68.5, 0.9) 67 (66–68, 0.63) 68.2(67.1-69.5, 0.7)

PTV MIN 58.9 (56.7-60.6,1,17) 54 (46.5-58.1, 3.68) 54.4(45.2-58.6, 3.16)

PTV MEAN 64.2 (63.9-64.4,0.16) 64.2 (63.9-64.6, 0.2) 64.2(63.5-64.7, 0.33)

PTV MEDIAN 64.2 (63.9-64.4, 0.17) 64.4 (64–64.8, 0.22) 64.3(63.9-64.9, 0.27)

PTV V95% (cc) 624 (299–987, 208) 495 (244–765, 159) 490(246–751, 150)

PTV D95% 62.3 (61.6-63, 0.42) 62.3 (61.5-62.7, 0.31) 61.8(59.6-62.8, 0.82)

PTV D2% 66.5 (65.1-68, 0.82) 65.9 (65.2-66.2, 0.32) 66.3(65.7-67, 0.39)

PTV D50% 64.2 (63.9-64.4, 0.17) 64.4 (64–64.8, 0.22) 64.3(63.9-64.9, 0.28)

PTV D99> 60.8Gy 61.1 (60.4-62.3, 0.54) 60.4 (59.6-61.3, 0.55) 60.2(57–61.6, 1.11)

PTV D98> 60.8Gy 61.6 (60.9-62.6,0.51) 61.2 (60.4-61.8, 0.36) 60.8(58.2-62, 0.97)

Paddix Index 0.75 (0.71-0.8, 0.02) 0.92 (0.87-0.97, 0.03) 0.91(0.88-0.94, 0.02)

RECTUM MEDIAN 35 (16.4-58.1,12) 36.7 (19.4-44.8, 5.89) 39.6(19.9-51.3, 7.6)

RECTUM D98% 9.06(1.58-24.4, 8.06) 6.38 (2.19-16.4, 4.93) 7.37(2.54-19.9, 5.3)

RECTUM D2% 62.1(41.6-64.8, 5.71) 62.4 (50.3-65.3, 3.44) 63.3(45–66.8, 5.18)

RECTUM D60< 40Gy 31.2 (14.2-54.2, 11.2) 33 (14.5-37.9, 5.75) 34.3(14.4-44.9, 8)

RECTUM D50< 50Gy 35 (16.4-58.2,12) 36.8 (19.4-44.8, 5.85) 39.4(19.9-51.2, 7.71)

RECTUM D40< 64Gy 40.7 (18.7-60.5, 12) 40.7 (25.1-51.4, 5.77) 44.1(23.4-57.3, 7.96)

RT FEMUR MEDIAN 40 (36–43.2, 2.8) 21.5 (19.5-23, 1.08) 17.3(13.1-21.5, 2.77)

RT FEMUR D98% 9.55 (1.84-31.8, 7.84) 2.62 (1.46-6.61, 1.37) 2.27(1.32-4.2, 0.84)

RT FEMUR D2% 49.9 (41.2-61, 4.9) 34.8 (25.4-51.9, 6.74) 35.1(28–52, 5.99)

RT FEMUR D100< 35Gy 5.24 (1.32-19, 4.73) 1.74 (1.16-3.2, 0.58) 1.65(0.9-2.83, 0.61)

RT FEMUR D60< 45Gy 38.5(32.6-42.3, 2.97) 20.6 (18.5-22.2, 1.24) 15.4(11.5-20.5, 3.14)

RT FEMUR D10< 50Gy 46.4(39.6-50.7, 3.41) 28.6 (23.8-37.5, 3.88) 29(22.6-40.8, 4.23)

LT FEMUR MEDIAN 39.9 (35.4-43.2, 2.83) 22.1(20.7-24.3, 1.07) 15.5(12.1-18.8, 2.4)

LT FEMUR D98% 10.4 (1.6-32.1, 8.66) 2.79 (1.32-7.38, 1.71) 2.51(1.16-5.12, 1.12)

LT FEMUR D2% 47.8 (41.7-51.6, 3.36) 32.3 (26.6-42.6, 4.24) 32.4(26.1-38.9, 3.38)

LT FEMUR D100< 35Gy 5.45 (1.17-15.8, 4.37) 1.75(0.92-3.28, 0.69) 1.84(0.88-3.88, 0.85)

LT FEMUR D60< 45Gy 37.3 (29.2-42.1, 3.84) 21.4(19.8-23.4,1.09) 12.9(8.48-15.4, 2.2)

LT FEMUR D10< 50Gy 45.1(39.4-49.8, 3.38) 26.7(24.5-31.5,1.96) 27.2(21.2-32.2, 2.86)

NON-RECTAL BOWEL MEDIAN 48.9 (20.6-63.2, 14.2) 42.2 (11.3-62.9,14.5) 42(10.5-63, 14.3)

NON-RECTAL BOWEL D98% 13.6 (2.08-21.8, 6.51) 13.1(2.72-30.6,7.94) 12.5(2.73-29.1, 7.63)

NON-RECTAL BOWEL D2% 65 (62.1-67, 1.04) 65.3(64.6-66.1,0.47) 65.6(64.6-66.6, 0.52)

NON-RECTAL BOWEL D30< 40Gy 58.7 (40.4-64.2, 7.06) 55.6(34.2-64.9,9.65) 55.6(36.5-64.5, 8.94)

NON-RECTAL BOWEL D0< 45Gy 65.9 (64.3-67.8, 0.88) 66.1(65.3-67,0.54) 66.9(65.7-67.8, 0.64)

SMALL BOWEL MEDIAN 44.4 (16.1-63.5, 17) 38(15.9-63.7,15.2) 35.8(14.7-63.1, 15.6)

SMALL BOWEL D98% 18.1(2.19-55.2, 14.1) 13.4(3.04-29.4, 8.53) 12.2(3.13-27.2, 7.57)
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Table 3 Dosmetric values for whole bladder treatment (Continued)

SMALL BOWEL D2% 59.3(39–67.3, 10) 56.5(30–66.1,14.1) 56.3(29.4-66.9, 14.8)

SMALL BOWEL D30< 40Gy 52.7 (21.3-64.7, 16.6) 49.9(23.6-63.7, 16) 49.5(21.5-64.5, 17.3)

SMALL BOWEL D0< 45Gy 62.9 (49.9-67.8, 5.66) 60.3(33.5-67, 11.5) 60.4(31.5-68.4, 12.8)

LARGE BOWEL MEDIAN 48.8 (9.27-62.7, 14.9) 42.5(7.71-64, 15.1) 42.8(6.58-64, 14.7)

LARGE BOWEL D98% 13.5 (1.9-20.6, 6.11) 12.9(2.34-30.6, 7.62) 12(2.26-29.1, 7.26)

LARGE BOWEL D2% 64.9 (63.3-66.5, 0.92) 65.1(64.3-65.8, 0.48) 65.3(64.1-66.2, 0.65)

LARGE BOWEL D30< 40Gy 58.9 (36.4-64, 7.24) 55.1(32.1-64.7, 9.77) 54.4(25.9-64.9, 11.3)

LARGE BOWEL D0< 45Gy 65.5 (62.9-67.5, 1.12) 66(65.3-66.9, 0.48) 66.7(65.7-68.4, 0.77)
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Simultaneous infield boost (SIB)
Table 5 shows the comparison of IMRT and VMAT for a
SIB in the 10 patients with well demarcated tumours.
VMAT was associated with a longer planning time but
reduced MUs for treatment. Doses to rectum, small
bowel and non rectal bowel were comparable for 3D-
CRT without boost, versus IMRT and VMAT with SIB.
This is illustrated in Table 5.

Discussion
Minimising time taken in the treatment room is import-
ant for a variety of reasons including patient satisfaction,
as well as departmental throughput. In addition, the
bladder is a dynamic soft tissue organ, the size and shape
can vary according to urine filling and its position can
vary according to its size as well as due to rectal filling.
Hence it would seem to be the ideal organ for daily on-
line imaging with corrections based on soft tissue pos-
ition [16,27,28]. The planning datasets in this study are
all from patients treated using daily online image guided
adaptive radiotherapy [16]. Intrafraction motion and
bladder filling is a concern if there is a significant daily
treatment duration. Keeping the treatment time as short
as possible is important to reduce intrafraction filling as
a recent MRI based study has shown increased filling in
intervals up to 28 minutes [5]. Studies using ultrasound
[29] as well as MRI [30] have shown in certain cases fill-
ing and motion during time in the treatment bunker can
Table 4 Tumour Control and Normal Tissue complication Prob

3D-CRT

Mean(min-max, st dev)

EUD PTV 64(63.7-64.3, 0.19)

TCP PTV 66%(65%-67%, 1%)

EUD rectum 52.9(36.1-58, 5.04)

EUD RTFEM 38.9(31.2-47.8, 4.29)

EUD NRB 57.8(49.4-62.1, 3.18)

NTCP NRB 44%(5%-69%, 18%)

EUD LFH 37.1(31–41.2, 3.23)
be significant. With changes in technology such as faster
CBCT reconstruction times, increased treatment auto-
mation and volumetric arc therapy, time in the treat-
ment bunker is reducing.
A number of studies in other tumour sites have shown

that VMAT results in similar plan quality with substan-
tially reduced treatment times compared to IMRT
[7,14,31,32]. The combination of similar plan quality and
reduced treatment time shows the clear advantage of
VMAT over IMRT. In an early report of IMRT in
muscle invasive bladder cancer, Budgell et al. [33] found
that using a 4 field IMRT technique was feasible and
took an average of 20 minutes treatment delivery time
per treatment fraction. Muren et al. [34] examined con-
comitant tumour boost for bladder cancer using IMRT,
finding such a technique feasible in 9 of 10 planned
cases. It is important to note that in only 50% of cases,
the dosimetric criteria were met with a 5 field plan but
in 90% of cases the criteria were meet using a 7 or 9
field plan [34] at the penalty of increased low dose ir-
radiation of surrounding normal tissues. While there has
been an examination of VMAT for simultaneous inte-
grated boost for intraprostatic lesions [35] there is little
reported in the literature for bladder cancer.
In our study all contouring and planning was con-

ducted by the same investigators prospectively. It may be
possible that the longer VMAT planning times may be
reduced as the staff become even more experienced in
abilities

IMRT VMAT

Mean(min-max, st dev) Mean(min-max, st dev)

64(63.7-64.5, 0.23) 63.9(62.6-64.5, 0.49)

66%(65%-67%, 1%) 65%(62%-67%, 1%)

51.1(36.8-57.7, 4.63) 52.5(37.2-59.2, 4.94)

24.9(16.6-41.8, 6.51) 24.3(18.4-40.3, 5.88)

57.2(50.2-61.6, 2.93) 57.3(50.7-61.6, 2.95)

40%(7%-67%, 17%) 40%(8%-67%, 17%)

22.9(17.6-29.2, 3.46) 21.7(16.6-28, 2.99)



Table 5 SIB comparison using IMRT and VMAT

Variable IMRT BOOST VMAT BOOST

Mean(min-max, st dev) Mean(min-max, st dev) p-value

CTV MAX 76.1(75.1-77.2, 0.69) 77.4(76–78.4, 0.66) 0.004

CTV MIN 63.2(61.7-66.3, 1.33) 61.5(60.2-63.5, 1) 0.011

CTV MEAN 71.5(68.7- 74.3, 1.75) 71.2(68.6-73.2, 1.43) 0.398

CTV MEDIAN 72.3(67–74.6, 2.88) 71.9(66.9-74.1, 2.62) 0.068

CTV D98% 64.8(62.8-69.7, 2.2) 64.4(62.9-68, 1.73) 0.625

CTV D2% 75.4(74.6-76.4-0.55) 76(75–76.6, 0.48) 0.007

CTV D99> 60.8Gy 64.5(62.5-69.1, 2.08) 63.8(62.4-69.1, 1.85) 0.044

PTV MAX 76.7(75.1-78.3, 0.9) 78.3(76.1-80.2, 1.15) 0.006

PTV MIN 55.1(47.3-57.4, 2.9) 55.5(15.5-57.6, 1.93) 0.476

PTV MEAN 68.8(67.5-70.4, 1.2) 68.8(67–70.4, 0.89) 1.000

PTV MEDIAN 67.9(65.5-71.6, 2.58) 67.7(65.9. 70.1, 1.37) 0.688

PTV V95% (cc) 557(254–798, 171) 552(267–804, 173) 0.756

PTV D95% 63.1(62.5-63.7, 0.46) 62.9(62–63.9, 0.56) 0.450

PTV D2% 75.5(74.5-76.3, 0.49) 75.9(73.4-76.8, 0.96) 0.056

PTV D50% 68.2(65.8-71.6, 2.45) 67.7(65.9-70.1, 1.37) 0.350

PTV D99> 60.8Gy 61.5(60.5-62.5, 0.58) 61.9(60.3-70, 2.73) 0.307

PTV D98> 60.8Gy 62.2(61.5-62.9, 0.47) 61.9(61–63, 0.63) 0.307

BOOST GTV MAX 75.7(74.9-76.9, 0.57) 76.6(75.4-77.6, 0.74) 0.006

BOOST GTV MIN 73.2(72.3-74, 0.52) 72.9(71–77.2, 1.58) 0.142

BOOST GTV MEAN 74.5(74.4-74.5, 0.02) 74.5(74.4-74.5, 0.03) 0.357

BOOST GTV MEDIAN 74.5(74.2-74.6, 0.1) 74.5(74.4-74.6, 0.04) 0.308

BOOST GTV D98% 73.5(72.9-74.2, 0.45) 73.2(72.5-73.8, 0.39) 0.075

BOOST GTV D2% 75.3(74.8-76, 0.38) 75.7(75.1-76.5, 0.46) 0.029

BOOST GTV D99> 70.30Gy 73.5(72.7-74.2, 0.49) 73.1(72.2-73.3, 0.46) 0.068

BOOST PTV MAX 76.6(75.1-78.3, 0.9) 78.6(77–80.2, 0.9) 0.004

BOOST PTV MIN 66.4(63.3-69.5, 1.9) 67.1(65.2-69.5, 1.45) 0.168

BOOST PTV MEAN 74.2(73.6-74.5, 0.26) 74.1(73.7-74.4, 0.22) 0.056

BOOST PTV MEDIAN 74.4(73.8-74.6, 0.28) 74.3(74–74.6, 0.17) 0.350

BOOST PTV V95% (cc) 193(60.8-273, 65.1) 179(61.3-250, 55.9) 0.083

BOOST PTV D95% 71.9(71–72.9, 0.65) 71.3(70.2-72.2, 0.6) 0.023

BOOST PTV D2% 75.8(74.7-76.6, 0.53) 76.7(75.8-77.5, 0.48) 0.004

BOOST PTV D50% 74.4(73.8-74.6, 0.28) 74.3(74–74.6, 0.17) 0.350

BOOST PTV D99> 70.30Gy 70.4(68–72, 1.08) 70.3(69.3-72, 0.78) 0.683

BOOST PTV D98> 70.30Gy 71.1(69.9-72.4, 0.81) 70.7(69.7-72.4, 0.75) 0.185

RECTUM MEDIAN 36.4(19.2-43.9, 6.31) 37.1(19.2-49.1, 8.02) 0.351

RECTUM D98% 5.36(2.28-15.4, 4.3) 6.3(2.62-19.5, 4.78) 0.045

RECTUM D2% 66.1(50.8-72.6, 6.18) 66.8(44–75, 8.44) 0.100

RECTUM D60< 40Gy 32.5(14.5-38, 6.39) 32.5(14.9-41.9, 7.6) 0.423

RECTUM D50< 50Gy 36.4(19.2-43.9, 6.32) 37.1(19.2-49.1, 8) 0.415

RECTUM D40< 64Gy 41(24–52.5, 6.9) 41.8(22.7-55.9, 8.68) 0.398

RT FEMUR MEDIAN 24(19.5-27.9, 2.23) 23.9(16.6-31.8, 4.28) 0.965

RT FEMUR D98% 3.07(1.73-6.82, 1.54) 2.86(1.18-5.45, 1.09) 0.625

RT FEMUR D2% 39.5(30.7-54.8, 7.3) 42.4(33–55, 5.96) 0.142
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RT FEMUR D100< 35Gy 1.96(1.17-3.33, 0.65) 2.1(1.28-3.96, 0.75) 0.126

RT FEMUR D60< 45Gy 22.9(17.5-27.2, 2.59) 22.8(14.4-34.5, 5.6) 0.760

RT FEMUR D10< 50Gy 31.8(27.1-39, 3.83) 36.8(29.9-47.4, 4.86) 0.041

LT FEMUR MEDIAN 24(19.2-28, 2.27) 20(16.2-24.6, 2.31) 0.009

LT FEMUR D98% 3.18(1.73-7.74, 1.87) 3.19(1.81-5.81, 1.35) 0.213

LT FEMUR D2% 35.5(29.6-46.9, 5.33) 37.4(30.1-45.5, 5.57) 0.505

LT FEMUR D100< 35Gy 1.96(1.2-3.33, 0.62) 2.27(1.28-3.96, 0.91) 0.044

LT FEMUR D60< 45Gy 23.1(17.9-27.1, 2.35) 18.5(14.8-24.1, 2.66) 0.008

LT FEMUR D10< 50Gy 29.2(27–32.9, 2.13) 32.7(27.4-40.2, 4.7) 0.053

NON-RECTAL BOWEL MEDIAN 48.3(29.5-65.8, 11.6) 46.3(28.7-63.6, 12.1) 0.029

NON-RECTAL BOWEL D98% 15.6(7.5-26.9, 7.38) 13.5(6.63-31.9, 7.86) 0.045

NON-RECTAL BOWEL D2% 72.3(66.8-75.5, 3.13) 72.3(67–76.1, 3.37) 0.894

NON-RECTAL BOWEL D30< 40Gy 59.2(33.6-71.7, 9.99) 58.4(37.2-68.8, 9.38) 0.351

NON-RECTAL BOWEL D0< 45Gy 75.3(71.5-77.1, 1.53) 76.2(71.6-78.7, 2.19) 0.023

SMALL BOWEL MEDIAN 42.5(18.3-65.7, 14.8) 37.5(14.4-63.5, 16.6) 0.019

SMALL BOWEL D98% 16.7(5.81-33.6, 9.95) 12.7(5.88-25.7, 6.73) 0.008

SMALL BOWEL D2% 62(37–75.8, 16.4) 59.5(28–77.2, 20.4) 0.221

SMALL BOWEL D30< 40Gy 50.9(23.3-70.5, 17.1) 47.2(17.3-67.2, 20.4) 0.076

SMALL BOWEL D0< 45Gy 68.8(43.5-76.3, 13) 67.6(30–78.7, 17.5) 1.000

LARGE BOWEL MEDIAN 50.7(28.4-67, 11.1) 48.5(25.4-65, 12.2) 0.023

LARGE BOWEL D98% 15.1(6.46-26.9, 6.71) 13.6(6.23-31.9, 7.34) 0.068

LARGE BOWEL D2% 71.3(65.3-75.7, 3.29) 71.6(66.8-76.3, 3.19) 0.286

LARGE BOWEL D30< 40Gy 61.7(45.5-73.3, 6.52) 60.2(37.8-72.9, 8.91) 0.168

LARGE BOWEL D0< 45Gy 74.8(71.5-77.1, 1.52) 75.4(71.6-78.6, 2.3) 0.142

PLANNING TIME (MINS) 65.5(45–100, 19.7) 159(60–250, 54.3) 0.005

TOTAL MU 822(684–1047, 94.1) 419(359–464, 34.4) 0.004

PTV CONFORMITY INDEX (CI) 1.12(1.04-1.29, 0.07) 1.11(1.05-1.22, 0.05) 0.953

PTV BOOST CONFORMITY INDEX (CI) 1.14(0.99-1.48, 0.16) 1.06(0.97-1.23, 0.08) 0.068

PTV HOMOGENITY INDEX (HI) 0.196(0.18-0.22, 0.014) 0.2(0.08-0.24, 0.04) 0.258

PTV BOOST HOMOGENITY INDEX (HI) 0.06(0.03-0.08, 0.02) 0.081(0.05-0.1, 0.014) 0.009

EUD PTV 67.3(65.8-69, 1.24) 67.3 (66–69.1, 0.8) 0.965

TCP PTV 74%(71%-78%, 3%) 74%(71%-78%, 2%) 0.965

EUD PTV2 66(64.6-67.7, 1.21) 66(64.7-67.7, 0.78) 0.965

TCP PTV2 71%(67%-75%, 3%) 71%(68%-75%, 2%) 0.965

EUD rectum 54.1(37.1-61.6, 6.71) 55.6(38.7-64.4, 7.11) 0.011

EUD RTFEM 29.4(21.1-43.7, 6.42) 30.6(22.1- 42.9, 5.8) 0.505

EUD NRB 62.6(52.4-72.1, 5.05) 62.6(52.8-71, 4.95) 0.894

NTCP NRB 68%(13%-96%, 23%) 67%(14%-95%, 23% 0.722

EUD LFH 24.5(19.8-32.4, 3.81) 25.9(19.6-33.2, 4.89) 0.450
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this newer technology. However we did not find a trend
of planning times decreasing over the study period.
While our study did not specifically examine

radiation-induced second malignancies, they are an in-
frequent but feared complication of treatment [36].
IMRT leads to an increase in monitor units compared to
3D-CRT and therefore is likely to increase the integral
dose [6]. Ruben et al. found that the effect on secondary
cancer induction by spreading out the low to intermedi-
ate dose with IMRT is small [37]. While IMRT increases
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the MU demand compared to 3D-CRT, the smaller field
size and reduced average filed intensity have been
reported to reduce the scatter more than sufficiently to
compensate for any increase in head leakage [37]. The
decrease in MUs required with VMAT reduces exposure
to leaked radiation from the gantry head, which is a con-
cern regarding the development of second cancers [38].
However VMAT delivers dose circumferentially around
patients, potentially leading to an increase in the volume
of tissue exposed to low radiation doses. While we found
that the monitor units with VMAT was significantly
lower than for IMRT, as both the delivered dose distri-
bution and leakage radiation play a role in depositing
dose outside the treatment volume, the potential for sec-
ondary malignancies after curative treatment remains
uncertain across these two techniques [10].
Reduced MUs does have other advantages in the run-

ning of radiotherapy departments including extended
linear accelerator lifespan, reduced shielding require-
ments as well as the likely economic benefit of faster
treatment and throughput. The reduction in treatment
times with use of VMAT are particularly useful for blad-
der cancer treatment given the organ can fill with urine
and move with increasing treatment times. The results
of our study for VMAT are promising, but only a rando-
mised clinical study can show the real effects of the
introduction of such technique. Unfortunately, with low
levels of referral for organ preservation for bladder can-
cer in many countries, such randomised studies remain
unlikely.

Conclusions
Radiotherapy to the bladder is complicated by the fact
that bladder volume may increase during delivery. If
bladder cancer patients are to benefit from modern
radiotherapy such as IMRT, it is essential to deliver the
treatment as fast as possible. We were able to demon-
strate that IMRT and VMAT plans are similar in terms
of dose distributions and both have superior conformity
indices when compared to 3DCRT. Given the benefits in
terms of reduced MU as well as treatment time, VMAT
appears to be the ideal technology to be used with daily
image guided or adaptive radiotherapy for muscle inva-
sive bladder cancer.
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